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ABSTRACT

Aeroservoelasticity studies are interactions between three main disciplines: aerodynamics, aeroelasticity
and servo-controls. In the aeroelasticity area, is known that aecrodynamic unsteady forces for a range of
frequencies and Mach numbers are calculated by use of methods such as Doublet Lattice Method (DLM)
in the subsonic regime or by Constant Pressure Methods (CPM) in the supersonic regime. These methods
are usually implemented in finite element aeroelasticity software such as Nastran, STARS or any other
similar type of software. For aeroelasticity studies, we calculate an aerodynamic unsteady force only for
the aircraft elastic modes, while for aeroservoelasticity studies, is necessary to calculate these forces for all
aircraft modes: elastic, rigid, elastic and control, not only for its elastic modes. In order to calculate
aerodynamic forces for all aircraft modes, we need to consider notions of the flight dynamics theory
(Newton’s equations) for the aircraft rigid and control modes aerodynamic forces calculations, while the
methods implemented in finite element aeroelasticity software will be considered for elastic aerodynamic
forces calculations. Therefore, the unsteady aerodynamic forces corresponding to all aircraft modes will be
calculated with two different methods: numerical and analytical.

1.0 INTRODUCTION

Aeroservoelasticity studies are very important in the aircraft industry. After an extensive bibliographical
research in the field, we did not find a well-documented formulation for rigid and control mode
aerodynamic forces for aeroservoelasticity; therefore we have formulated and validated a novel method in
this paper.

Finite element aeroelasticity software such as STARS' or Nastran® does not accurately calculate the rigid
and control mode aerodynamic forces, but they do calculate the elastic mode aerodynamic forces. Our new
formulation will calculate and validate the aerodynamic rigid and control modes forces on an F/A-18
aircraft by use of the Doublet Lattice Method (subsonic regime) and the Constant Pressure Method
(supersonic regime). Thus, rigid and control mode forces calculated with our new formulation will replace
the rigid and control modes calculated with finite element-based aeroelasticity software.

The F/A-18 aircraft structure is modelled’ by finite element methods, and 44 frequencies and mode shapes
are calculated for this aircraft, which are divided into the following three groups: 6 rigid modes (3
symmetric and 3 anti-symmetric), 28 elastic modes (14 symmetric and 14 anti-symmetric) and 10 control
modes (5 symmetric and 5 anti-symmetric)
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The Doublet Lattice Method, DLM, (in subsonic regime) or the Constant Pressure Method, CPM, (in
supersonic regime) are used to calculate the unsteady aerodynamic forces Q(k, Mach) for various Mach
numbers and reduced frequencies. The aerodynamic forces correspond to the following modes: 6 rigid
modes (3 modes in translation and 3 modes in rotation), 10 control modes (5 modes for longitudinal and 5
modes for lateral motions) and e represent the 28 elastic modes (14 modes in longitudinal motion and 14
modes in lateral motion).

The aerodynamic forces for the rigid-to-rigid mode interactions Qr (dimensions 6 * 6) and for the rigid-to-
control mode interactions Q. (dimensions 6 * 10), calculated with finite element software Nastran, will be
replaced by Q,rand Q¢ values calculated with the two schemes, analytical and numerical, presented in this

paper.
2.0 ANALYTICAL VERSUS NUMERICAL FORMULATIONS

The analytical formulation is presented in Sections 1 to 3, and the numerical formulation is presented in
Section 4. Details of the first simulation scheme with stability derivatives in the wind system of
coordinates are explained in the first section, while Section 2 presents the first scheme with state variables
introduced in the aircraft closed loop. Section 3 presents the analytical formulations for the aerodynamic
forces for rigid-to-rigid and rigid-to-control interactions mode calculations.

2.1 First simulation scheme with stability derivatives in the wind system of coordinates

The detailed first scheme is shown in Figure 1:

Block 1 Block 2 Block 3 Block 4 Block 5
AX, AX q
- _ - V..V, .V, e -
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- z - L YisZ A
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Gon =75 v .
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Figure 1: First simulation scheme with the stability and control coefficients calculated in the wind
coordinates system
This scheme can be written in its equivalent form shown in Figure 2.
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Figure 2: Simplification of the scheme shown in Figure 1

The details of Blocks 1 to 9 are next presented.
Block 1 description

Two sets of stability and control derivatives in the wind coordinate system are known, provided by NASA
DFRC (Dryden Flight Research Center) for various flight conditions characterized by Mach numbers,
altitudes and angles of attack. We express the aircraft behaviour with the second state space matrix
X
} =[A_t

equation:
X
{ } (D
u

Where the At matrix has the dimensions (6*19), and Apas, is the stability derivative coefficients matrix of
dimensions (6 x 9):

—

nasa nasa

y:A X+B u :[Anasa Bnasa]|:

c

L OTT: T: . U oY e R R o}
q O6a N O MH d o P op
G G G G K K &G & &
q oa N 08 H P a B oy
L ST ST oY Y oYY: V. oW : O o (2)
@ e v @ H d a P dp
T, o oo oo G o & G G
q oa N 8 MH PP o P op
q O6a N O MH P a P op
K L L L XXX XK
& oa N O H H a o op

and the control derivative coefficients matrix Bpasa has the dimensions (6 x 10) and is divided into two
matrices corresponding to the longitudinal and lateral aircraft motion, which are denoted by Biong nasa and

) ) _ ) y )
Biat nasa. Therefore, Bpasa is written as B, —I:Blong_nasa B,at_nasa:' where Biong nasa 18 @ (6*6) matrix

containing the derivatives of the same coefficients as the ones of Apssa (Which are Ci, Cy, Cy, Cp, Cit, Cy)
with respect to the longitudinal control surfaces Aong aiL, Aong HT> Olong RUD,> Olong_LEF ANd Olong_TEF»; Blat_nasa 15
a (6*6) matrix containing the derivatives of the same coefficients as the ones of Apssa (Which are C, Cy,
Cn, Cp, Ciit, Cy) with respect to the lateral control surfaces Sat aiL, Oat HT, Oat RUD> Ot LEr and Aar. The
output, state, and input vectors are given by the following equations:
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y=(AC, AC, AC, AC, AC, AC,) 3)
x=(Aq Aa AV A0 AH Ap Ar AB Ag) (4)
U= [Aé‘longfLEF Aé‘IonngEF Aé‘IonngIL Aé‘IonngT Aé‘lonngUD (5)

T
AIathEF AIathEF AIathIL AIatfHT AIatfRUD:I

The Taylor series approximations of stability and control derivatives at the trim position AC,, ACy, ACy,
ACp, AC.ix, and ACy can be written as follows:

AC = C, AQ+ C, Aa+ &, AV + &, AG+ G, AH + C, Ap+ C, Ar + o, AB+ G Ap+
aq da N o0 oH ap or B o

oC, oC oC oc oC 6
—— A, i +—LAé‘on +—LA60n —L A&on +—" Aé‘on (6)
8§Pi7A||_ poAL long_HT tong AT 09, long_RUD long_LEF o5 long _TEF

long_RUD long _LEF long_TEF
oc, oC,

—Aalat AL +—A5|at HT +LA5M RUD +LA5M LEF +LA5
aé]athu. - a5|at7HT - 00, - 00, - o6,

lat_TEF
Jat_RUD lat_LEF lat_TEF

+

The variations of all stability coefficients are written under similar forms as the ones given by equations

(6).

Block 2 description
The variations of forces and moments are written as a function of their stability and control derivatives as
follows:

AX,, S 00 O 0 0 ) AC,
AY,, 0S 0 0 0 0 || AC,
AZ, | 10 0 S 0 0 0 || AC_, )
AL, 0 0 0Sb 0 0 ||AC
AM, | |0 0 0 0 S.t 0 | AC,
AN, 000 0 0 S-bJlAC,

where the forces variations on the three axes are [AXW AYW AZW] and the moments variations on all

_ \ 2
three axes are [ALW AM,, ANW] ,and where S = P

S= Qdyns ‘

Block 3 description

It is well known in this field* that an aircraft’s system of coordinates (Xs, Ya, Za) is related to the wind
coordinate system (X, Yw, Zw) by the following two successive rotations of the coordinate system (X, Yu,
Zy). 1. A first rotation with sideslip angle £ around the z,, axis to obtain the intermediate coordinate system

(X’y’2’) and 2. A second rotation with attack angle « around the Y’ axis to obtain the aircraft coordinate
system (Xa, Ya, Za), Which gives:

X, cosacosff —cosasinff —sina || X,
Va|=| sing cos 0 | v, ®)
z, sinacosf —sinasinfS cosa ||z,
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The X, and Z, forces have opposite signs (see equations 9.1), while the L,;, My, and N; moments have the
same sign (see equations 9.2) with respect to the classical formulation (equations (8)), which is due to their
orientations, as given by NASA DFRC.

X, —cosacosfB cosasinf sina X
Y, |= sin cos f3 0 Yo O.1)
Z, —sinacosf sinasinf -cosa || Z,

L. cosacos B —cosasinff —sina || L,
M, [= sin cos f 0 M (9.2)
Na

w

sinacosff —sinasinfS  cosa || N,

Equations (9.1) and (9.2) are linearized around the equilibrium position (trim) of the F/A-18 aircraft by the
small perturbations theory, in which the index of any quantity at equilibrium is denoted by 0 and the
variation of a quantity around its equilibrium position is denoted by A. The angles of attack and sideslip
angles are expressed with this theory as follows:
{a =a,+Aa
(10)
B=p+Ap

The sideslip angle at equilibrium /3, given by the NASA DFRC is equal to 0, and therefore we can write

the sideslip angle S as a function of its small variation Af:
cos B =cos(f, +Af)=cosAf =1

sin B =sin(f, +Af) =sinAB =Af
The aircraft forces X, Y, Z and moments L, M, N calculated in the aircraft system a and in the wind system
w are also written by use of the small perturbations theory, such as:
Xa=Xao+4Xq ,..., La=Laoo+ ALa ..., Xy = Xuo + AXyy, «.., Ly = Lo + ALy, (12)
The forces Xy, Yo, Zo and the moments Ly, My, Ny at equilibrium are zeros in the aircraft system a and in
the wind system W, and the angle of attack A« and sideslip angle Af variations are also equal to zero. We
introduce these last values into equations (9)-(12), and we obtain the following system of equations:

AX AX

(11)

AY, AY,,
AZ, AZ,
=C,, (13)
AL, AL,
AM, AM,,
AN, AN,
where C_, has the following form :
—cose, 0 sing, 0 0 0
0 1 0 0 0 0
—sing, 0 -—cosg, 0 0 0
C. = i (14)
0 0 0 cosa, 0 -—sing,
0 0 0 0 1 0
0 0 0 sina, 0 cosq,
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We replace the force and moment variations in the wind system of coordinates AXy, AYy, AZy, ALy, AMy,
and AN,, as function of stability coefficients variations given by equation (7) into the right hand side of
equation (13) and we obtain:

AX, AC,
AY, AC,
AZa — Cm AC:Lif’( (15)
AL, AC,
AM, AC,,
AN, AC,
where the C_ matrix has the following form:
~S.cosa, 0 S-sing, 0 0 0
0 S 0 0 0 0
c - ~S.sing, 0 -S-cosa, ~ 0 0 ~ 0‘ (16)
0 0 0 S-b-cosa, 0 -S-b-sing,
0 0 0 0 ST 0
0 0 0 S-b-sing, 0 S-b-cose,

Block 4 description

The six degree-of-freedom block refers to the equations of motion of a rigid body in six degrees of
freedom. The theory can be found in the literature®. The Simulink toolbox is used here as Block 4, and is
composed of five blocks, 4.1 to 4.5.

Blocks 4.1 and 4.2 descriptions

The origin of the aircraft system of coordinates, a, is the aircraft center of gravity. The inertial system of
coordinates is fixed to the Earth and is denoted by i. The aircraft equations of motion are obtained with
Newton’s second law: The sum of the external forces acting on an aircraft is equal to the momentum rate
of change of the momentum of the aircraft over time (Block 4.1). The sum of the external moments® acting
on an aircraft is equal to the angular momentum rate of change of the aircraft over time (Block 4.2).

‘Translation aircraft
V, (u,v,w) speeds

Block 4.1
Block 4.4
©—> + > 1/s |-V W
Forces AccélérationsS (|
X.Y.Z a,,a,,a,
T Va (U, v, W)
Vectorial A [«

C Product1 | ip,q,r
C=AxB <

V, xo

Block 4.3

| 4.0y,

Block 4.2 ‘ DCM .
Block 4.5
5d, T

[ i 6.9
.0,y

Moments
L.M.N

el

Vectorial A [«

C  Product 2 aceclerations
s Ble—{ 1 | o

@ (1 @)

Figure 3: Description of Block 4 details on six degree-of-freedom dynamics
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Block 4.3 description

The Cosine Director Matrix CDM is calculated from the Euler roll, pitch and yaw angles ¢, 6, and  in
Block 4.3, and is used in Block 4.4.

Director Cosinus
Euler angles

- Matrix
> 09 / ) 03

Figure 4: Scheme of Block 4.3

cosfcosy cos@siny —sind
CDM =| cosysin@sing—siny cos¢g sing@sinfsiny +cosy cosg cosfsing (17)
cos@gsin@cosy +singsiny  siny sin@cos@—cosy sing cosdcosgp

Block 4.4 description

The linear speeds Vi, Vy and V, in the inertial system of coordinates i are calculated as a function of the
linear speeds U, v, and W in the aircraft systems a by three successive rotations: one first rotation with the
yaw angle y around the z, axis, a second rotation with the pitch angle @ around the Y, axis and a third
rotation with the roll angle ¢ around the x, axis, and we obtain:

V, u
V, |=CDM' | v (18)
\Y, w

4
Block 4.5 description
Block 4.5 relates the Euler angles ¢, 6, and v, and the angular speeds p, ¢, and r with the Euler time

derivatives ¢5, 0 ,and ¥ by use of the following equation:

é 1 singtand cosgtand |[ p
0|=|0 cosg —sing || q (19)
s 0 sin ¢ cos¢ r

cos@ cosd
Block 5 description
In Block 5, we calculate the variations of the aircraft’s true airspeed V, of the angle of attack «, and of the
sideslip angle f. In order to calculate these variations, we first calculate V, «, and £ as functions of linear
speeds in translation u, v, and W in the aircraft system of coordinates a*:

V =+/U* +V> + W’ ;o = arctan(w/ u); § = arctan [v/ (u? +W2)} (20)

The theory of small perturbations is applied to the terms V, «, £, u, v, and w.
5.1 True airspeed variation AV
We replace the speeds given by the perturbation theory in the first squared equation of the system of
equations (20):

(Vy + AV )’ = (U, +Au)’ +(V, + AV +(w, +Aw)’ (1)
At equilibrium we write:

2 2 2 2
Vy =Uy +Vy +W, (22)

The square products of speed variations Au?, Av2, AW?, and AV in equation (21) can be neglected, as they
are very small. Then, we divide equation (21) by 2V, and we obtain:
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AV =2 Ay Yo Ay + 2o (23)
0 0 0

At equilibrium, the components Uy, and W, of the true airspeed V, can be written as a function of the angle
of attack «a as follows:

u, =V,cose,; Ww,=V,sing, (24)
The researchers at NASA DFRC considered in their calculations £ = 0, so that the component Vv is equal
to zero:

V, =V,sin 3, =0 (25)
We replace equations (24) and (25) into equation (23) and we obtain:
AV = Aucos a, + Awsin ¢, (26)

5.2 Angle of attack variation A
The second equation of system (20) can also be written in the following form:

usina =Wcos o (27)
At equilibrium, equation (27) can be expressed as:
U, sinea, = W, cos o, (28)

We apply the perturbation theory to the quantities u, v and « (for example u = up+ Au, etc.). We further
replace these quantities, equations (24) and (28) in equation (27). The products of small quantity
variations, such as A Au and Aa Aw are neglected. We take into account the trigonometric equality sin®
+ cos’ap = 1 and the trigonometric functions for small angles of attack variations (cos Aa= 1 and sin Aa =
Aq), therefore we obtain the variation of the angle of attack as follows:

—sin ¢, cosa,
Aa = % Au+ 2 AW (29)
0 VO
5.3 Sideslip angle variation Ag
The third equation of the system of equations (20) can be written, for small variations of A4 (and for

B,=0),as:

\"
N

We express Af in the form of the products sum of the /£ derivatives with respect to u, v, and w at

(30)

equilibrium and the small perturbations of u, v, and w:

au J, N J, oW J,
The expressions of S derivatives at equilibrium are calculated by the derivation of equation (45), where Vv
=0, VO2 = ug + Wg , and we obtain:

(%j -t .{_l};.zu _o
au J, 1+ Vo2 ’ 2 (\¢u02+w02)3 ‘
u,” +w,’
(%) _ 1 R NIRRT :\/u02+w02 1 (32)
Ny oo, v, \/uoz P U WY U WY,
u,” +w,’
aﬁj 1 { 1} 1
&) e
u,” +w,’
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We replace the system of equations (32) in equation (31) and we obtain:

1
A =—A
B v v (33)

0
Finally, AV, Aq, and Ag, from equations (26), (29) and (33), respectively, are rearranged in the form of a
matrix system of equations:

AV co's a, 0 sing, AL
Ag |o| =8I0 o cosay |l (34)
VO VO
Ap . Aw
0 — 0
Vv

We add the system of equations (34) to the initial equations of the Block 4 output variations Au, Av, Aw,
AXi, AY;, Az, Ap, AQ, Ar, Ag, AG, and Ay, which become the Block 5 inputs, and we obtain a higher order
matrix system of equations:

Au
A AV
a AW
A
AX,
AV A
Yi
AG
Az, = AH (35)
AH |=B,
Ap
Ap A
Ar q
Ap Ar
Ag Ag
AO
Ay
where
0 0 0 000010000
8% g 9% 59000 00 0 0
VO VO
cose, O sing;b, 0 O O O O O O O O
0 0O 0 0000O0O0GO0TI1 0 (36)
B,=| 0 0 0 00100000 0
0 0 0 000100000
0 0 0 0000O0T1U00 0
O L 0 000000000
VO
0 0 0 00000O0T1O0O0

Block 6 description

The initial parameters of the matrix system of equations (35) are given by NASA DFRC in the stability
and control derivative files for each flight condition characterized by the Mach number, altitude and the
angle of attack:

(6 & Vo & Ho B 6 A 4] =0 o Vo Goea Homa 0 0 0 0] (37)
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Block 7 description

We calculate the air density p as a function of altitude H, and we obtain”:
9o _

—-1
LR
ﬁz( _ﬂ] a8)
Po T

where py is the air density at sea level, L is the temperature lapse rate, Ty is the air temperature at sea level,
H is the altitude, R is the gas constant and g is the gravitational constant at sea level.

Block 8 description

The dynamic pressure Qgyn is calculated* as a function of the aircraft’s true airspeed V and the air density p.

Block 9 description
The control surface inputs are excited with various signals. The control surfaces for the F/A-18 aircraft

analyzed here are: the Leading Edge LE flaps Alef = AJ, ., the Trailing Edge TE flaps Atef = Ad -,
the ailerons Aail = Ad,, , the horizontal tail Aht =Ad,,;, and the rudder Arud = Adg,, . One signal is

used at a time on the aircraft control inputs, to give a deviation of +5° around the equilibrium aircraft
position (trim) for its longitudinal and lateral aircraft motion in order to observe the forces and moments
variation over time. For the longitudinal motion, a signal was given on the horizontal tail, and for the
lateral motion a signal was given on the ailerons.

2.2 STATE VARIABLES INTRODUCTION IN CLOSED LOOP

We next develop a second formulation from the first formulation, in order to obtain the vectors of the
generalized coordinates and their time derivatives in closed loop form:

n= (A%, Ay, Az, A$,A0,Ap)'; 17 =(AV,,AV,,AV,,Ad,A0,Ay) (39)
The arrangement of stability coefficients on lines 1 to 6 of the matrices used in the first formulation
is:C,C,,,C\,Cp.Ci-C, (see equation (7)). In order to obtain the second formulation, it is necessary to

rearrange the order of the stability coefficients as follows: Cj,C,,C ,,C, ,C,,,C,. Therefore, the

notations Ajnt , Biong_int, and Biag ine are introduced for the intermediate matrices A, Biong, and By, in which
the order of the coefficients is rearranged.

We show below only the Ajy matrix, while Bigng ine (6*6) matrix contains the derivatives of the same
coefficients as the ones of Ajy with respect to the longitudinal control surfaces Aong aiL, Aong HT> Aong_RUD:
Olong_Ler and Aiong Ter, and Biat nasa 1S @ (6*6) matrix containing the derivatives of the same coefficients as
the ones of Ajy with respect to the lateral control surfaces At aiL, Qat 1T, Aat RUD> Olat Ler and Aat TeE.

L & &K L L &G &G & &
q O6a N 00 H p o op e
L & & L L & & L &L
A oa N o8 oH op or op op
Ly Ly Ly e Ly Cyp e e Ly (40)
A - a oa N o6 oH p or op op
|G L L L L L L L XL
A oa N o0 oH p or op op
Ly & L Ly Ly Ly Ly K Gy
a oa N o6 oH p or op op
G & L L L L & & Ky
A oa N o0 oH p or op op |

The intermediate matrix A, i for the A,, matrix is now written as follows:

1-10 RTO-MP-AVT-154
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84, 819
A1 Qg 86,19
a, a4, A5 19 41
%7int :[Aim Blongfint Blatiint]z Z[Amum Amzfintil (41)
a, 8, Q19
a, a,, 19
| 8351 &5 e A3 |

where A, . is the stability coefficients matrix and its analytical formulation is given in equation (42.1).

The A, ,, matrix is the control coefficients matrix [B Bt ] and its analytical form is expressed

long _int
by equation (42.2).
8y, Ay, 8y
85, g, &g
as; 85, a5 (42.1)
Amliint = a a a
L1 1,2 1,9
8, 8, a9
[ 851 &3, 59 |
a4,10 a4,11 a4,19
a6,10 aﬁ,ll a6,19
-[B B _ a5, A5y, as 19 (42~2)
Anziim _|: long _int Iatiint:|_ a a a
1,10 1,11 1,19
aZ,lO a2,11 a2,19
| @00 Sy o 830

Then, the second equation of a state space system may be written by use of equations (42.1) and (42.2) in
the rearranged order, as follows:

Aq Aé‘longfLEF
Aa Aé‘IungiTEF
ACD AV Aé‘longiAlL
ACY Aé‘long_HT
W, (43)
ACLift _ Aé‘longiFeUD
AC - Aﬂliim AH |+ AﬁZJnt AS
L lat_LEF
Ap -
ACM Ar Aé‘latjEF
AC,, Aé]at_AlL
AP AS,
A¢ lat_HT
Aé‘latjeUD

We replace the left hand side term of equation (35) in the first term on the right hand side of equation (43)
in order to obtain another set of state vectors X in the second equation of the state space system of
equations, and we obtain:

RTO-MP-AVT-154 1-11
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AC,
AC,
ACLift
AC,
AC,,

AC,

Au
Av
Aw
AX,
Ay,
Az, = A
Ap
Aq
Ar
Ag
A6

Ay

H

+ A

m2 _in

Aé‘long _LEF
Aé‘lonngF
A5|ong _AIL
Aé‘long _HT
Aé‘longiRUD
t Aé‘laL LEF
Aé‘latiTEF
A5|at7A||_
Aé‘laIiHT

A5Iat7RUD

(44)

We replace the vector output given on the left hand side of equation (44) in the right hand side term of
equation (15) in order to calculate the forces and moments in the aircraft system of coordinates:

AX
AY
AZ
AL,
AM,
AN

= Cm Am_

int Bm

The following notations are introduced:

C = Cm Anlfint Bm;

and we obtain:

AX
AY
AZ,
AL
AM
AN,

Au
AV
Aw
AX;
Ay;

Az, =AH fC A
Ap m Wn2_int
Aq
Ar
Ag
AO
Ay
D = Cm %27int
Au
Av Abigg Ler
Aw Abigng Ter
AX; A5|ong7A|L
Ay, Aé‘longiHT

Az, = H A,

IAp +P Aél‘latg:LREiD
Aq Aé‘latiTEF
Ar A5|anJ\|L
Ag A‘S‘IagHT
A0 Abiy_rup
Ay

AdlongiLEF
A5|ong _TEF
AalongiAlL
Aé‘longiHT
Aé‘longiRUD
A5|aLLEF
Aé‘la’(_TEF
Aé‘latJAlL
Aé‘latﬁT
Aé‘lat_RUD

(45)

(46)

47

The scheme shown in the next figure represents the conversion of the scheme shown in Figure 1 by use of
equations (39)-(47), and has the 12 state vectors x given by equation (39) in the closed loop. We obtained
the C and D matrices, which characterize the linear system at trim condition. These matrices are presented

in detail next.
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Au
AV AX, (force)
A Vx ’Vy ’Vz >
W
AX; AY, (force) X, Y,Z, [
_
Ay, » Y=otput
Az, AZ, (force)
Ap .0,y —»
—»| C D
Aq DCM [
—A—" AL, (moment)
Vs - V, (U, W) |
— -
AO AM , (moment) p.q.r
........ PO Initial
AN, (moment) p,q, 1 |—m conditions
—> e b
;4 6DoF
S,c.b
qdyn

;Y—’
[euipnjiBuo

Control surfaces

;_Y—/
|eloe|

Figure 5:  Simulation scheme with 12 state vectors in closed loop

We can represent the terms of the C and D matrices analytically. The C matrix has the following analytical
form:

C=C,A,B, =

(cn Cl12 CiI3 014J
(48)

C21 C22 C23 C24

where the C11, C12, C13, C14, C21, C22, C23, and C24 matrices are represented under analytical forms.
The By, matrix is expressed by equation (51), the Ay i matrix is given by equation (42.1), and their
product is written as follows:

i a
—eiz‘VZSI?/#‘Z‘HaAL3 cosa, # aM%JraAL3 sing, 0 0 a, a, a, &, a, a, 0
0 0 0
sing, 8 cos ¢, .
Ty tEaCoSa, S B Hagsing 000 Ay & ay Ay & Ay O
0 0 0
sing, A cosa, . (49)
—&, v +a;cosq, VA asi,zT"'asvs sineg, 0 0 &5 &, &, &, a, a, 0
Bm: 0 0 0
A sing, Ay cos o, .
_al.Z V +a1,3 COS(ZO 7 al,2 V +al,3 Slna() 0 0 al.S alk,() al,l a1$7 al,9 a1,4 O
0 0 0
sing, a, cosq, .
_az,z v 0+a2,3 CoS &, 78 az,z v 0+az,3 sima, 00 az,s az,ﬁ az,l az,7 az,9 az,zt 0
0 0 0
sing, a, cos ¢, .
_as,z v 0+a‘5,3 Cos &, 78 a3,2 v 0+as,3 sme, 00 as,s a‘s,e as,l a3,7 as,9 a3,4 0

0 0 0
The C matrix is the product of the C, matrix given by equation (24) and the A,;B,, matrices’ product
given by equation (49), while the C matrix analytical elements are found by identification. Due to the

pages number limitations, we give here only the C11 matrix elements:

_(a,,sin2«a a.,sina, a.,sin2e, & &4scosa, asgsina,
c, = S[ 4,2 0 -a,, cos’ a, - 5,2 0, %3 0. C,= S +

2V, Vv, 2 ’ V0 V0

RTO-MP-AVT-154 1-13
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a,,sin2q, as,sin2q,
: + 5

2
—| = COS
4,2 0
c”:S( -

V,

0

2 2V,

) .
+ a5,3 s &, ] N
0

_ -sin .
01,123'[_%2\/ %"'as,z'cos%j; (’22=S ?6/ 5 6= (aﬁzv +aﬁy3'smaoj

0

0 0

, :S[a{z sin o, &, si;ZaO = &) ;1\1/120‘0 “a,, cos’ %]; Cp = S_[— 8N, a5co8q, J

V,

0

The D matrix may be written under the form D = [ D1 D2]T , where D1 and D2 are:
dl 1 dl,Z dl,3 d1,4 d s dl 6 d1,7 dl,S dl,9 dl,lO
D1= d2,1 dz,z d2,3 d2,4 d2,5 dz,s d2,7 d2,x d2,9 d2,10
d3,1 d3,2 d3,3 d3,4 d3,5 d3,6 d3,7 d3,8 d3,9 d3,10
d4,1 d4,z d4,3 d4,4 d4,5 d4 6 d4,7 d4,8 d4,9 d4,10
D2 = d5,1 d5,2 d5,3 d5,4 d5,5 d5,6 d5,7 dS,S d5,9 5,10
dﬁ,l d6,2 d6,3 d6,4 d6,5 d6,6 d6,7 d6.8 dé,‘) d6,10

The matrix D=[D1 D2['

V,

0

V,

0 0

(50)

(51.1)

(51.2)

=C,A,, i, is the product of the C, matrix given by equation (16) and

the Amiim given by equation (42.2). The elements of matrices DI and D2 are calculated by

identification, and we show here only the first elements of D1 matrix.

d,
d,
d;
d,
d

S-
S-

( 8,9 °COSa, +a,,-sina, ) d, ~(—a411-cosa0+a5,”‘smao

cn|

( 412 COS A+, - smao) d, ,,3°Cosa, +a,;-sina,

II
v

( 414" COSC +5 - smao) d s

)
(- )
( 8,5 COS, +a5,5-sin ao)
( a417-cosa0+a517-sina0)

(—a4 16 €COS @ + 8, - Sin ao) d

IQ—S ( 415 " COS A+ g s1na0) d,lO—S ( 410 COS A+ - smao)

(52)

The C matrix (only its C11 elements are shown in equations (50)) and the D matrix (only its first elements
are shown in equations (52)) are further replaced in equation (47). Therefore, we obtain the two matrix
equations for the variations of forces AX,, AY, et AZ, and moments AL,, AM, et AN, in the aircraft system

of coordinates:

AX

a

AY,

AZ

a

Aé‘longiLEF
Aé‘lonngF
Aé‘longLAll_
Aé‘longLHT
A5|ong _RUD
A5Iat7LEF
A5|at7TEF
Aé‘latiAlL
Aé‘latiHT

A6,

lat_RUD

Au AX, Ap Ag

=CI11| Av |+CI12| Ay, |+C13| Aq |+C14| A |+ D1
AW Az, Ar Ay

(53.1)

UNCLASSIFIED/UNLIMITED

RTO-MP-AVT-154



UNCLASSIFIED/UNLIMITED

Analytical and Simulation Method
Validation for Flutter Aeroservoelasticity Studies

Aé‘Iong _LEF
Aé‘Iong _TEF

Aé‘IongiAIL
A9,

long _HT

AL, Au AX; Ap Ag ASe o (53.2)
AM, [=C21} Av |+C22| Ay, |+C23| Aq |+C24) AG |+D2| .

AN, Aw Az, Ar Ay R ;‘*EF
lat_TEF

AélatiAlL
A5Iat7HT
Aé]at_RUD

In equations (53.1) and (53.2), there are terms U, V, W, p, ¢, and r in the aircraft coordinate system and
terms X, Vi, Zj, #, 6, and i in the inertial coordinate system. We need to obtain these terms in the same
system of coordinates, and we chose the inertial system of coordinates. Therefore, we convert the linear
and angular speeds terms (U, v, w, p, ¢, and r) from the aircraft coordinates system a, into the inertial
coordinate system i. The speeds u, v, and w in the aircraft system of coordinates a are obtained, using
linearization, from the linear speeds and Euler angles in the inertial system of coordinates i. Equation (18)
can be written in the following form:

u cos fcosy cosfsiny —sind \(V,
V | =| singsinfcosy —cosgsiny  singsin@siny +cosgeosy  singeosd ||V, (54)
W) \cosgsinfcosy +singsiny  cosgsinfdsiny —singcosy  cosgeosd )\, )
The small perturbations theory is applied to the following quantities: u, v, w, Vy, Vy, V;, p, ¢, and r. The roll
and yaw angles at equilibrium given by NASA DFRC are equal to zero, ¢, and . The trigonometric

function (Sine and cosine) assumptions for small angles A¢, A6, and Ay are also considered. The products
of small terms such asAgAy ,AOAV,, AOAV,, AgAV, and AgAV, are neglected, and we consider the

equilibrium speeds Vyﬂ and VZO to be zero. We replace these assumptions in equations (54) and we obtain:

Au AV, Ag
Av |=P| AV, |+P1| AO (35)
AW AV, Ay
where:
cosg, 0 -—sing, 0 -V, sing, 0
P=| 0 1 0o |ad pi=|v sing, 0 -V, (56)
singf, 0 cos6, 0 Vv, cos¢, 0

The second type of linearization concerns the calculations of angular speeds p, g, and r in the aircraft
system of coordinates from the Euler angles and their derivatives in the inertial system of coordinates. The
angular speeds p, g, and r are expressed* as functions of Euler angles ¢, 6, and y, respectively, and their

time derivatives ¢,9 and . The small perturbations theory is applied to the Euler angles ¢, 0, and y,
their time derivatives ¢,(9 and y and to the angular speeds p, g, and r. The initial data given by the
NASA DFRC laboratories are given for the angular speeds p, =0, =, =0, Euler angles and their time

derivatives¢), =y, =0,6, =, and (150 = 90 =y, =0. The products of small angle variations such as

RTO-MP-AVT-154 1-15
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A@ A@ and other products of such small angles can be neglected. For small angle variations A¢@, A6, and
Ay (sin Ag= Ag¢, cos Ag =1, ...), we can write the following system of equations :

Ap) [(Ad-Aysing,) (1 0 —sind, [ A Ag
Aq |= AO =10 1 0 AO |=R| AO (57)
Ar cos Ay 0 0 cosf, )| Ay Ay

where R is the following matrix:

1 0 -—sing,
R={0 1 0 (58)
0 0 cos6,

We next replace the vectors (Au Av Aw)' given by equations (55) and (56) and (Ap Aq Ar)" given by
equations (57) and (58) into the two sets of equations (53.1) and (53.2) for the variations of forces

AX,,AY,,AZ, and moments AL,, AM, and AN, in the aircraft system of coordinates, and we obtain:

A9,

long LEF

A9,

long _TEF
Aé‘long _AIL
Aé‘longL HT
Aé‘long _RUD
Aé‘la'g LEF
Aé‘larjEF
A5|at_A||_
A5Iat7 HT

Aé‘lat_RUD

AX AV AX. A Ag

AY, |=C11-P-| AV, |+CI12:| AY, |[+C13-R:| A@ |+(C14+CI1-P1)-| A@ |+ DI-
AZ, AV, AZ, Ayr Ay

(59.1)

1-16 RTO-MP-AVT-154
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A,

long _LEF

A¢,

long _TEF

AJ,

long _ AIL

A¢,

long_HT

; Aé‘long RUD (59.2)
AM, |=C21-P AVy +C22| Ay, |[+C23-R| AG |+(C24+C21-P1)| AG |+D2 -

Aé‘lat LEF
AN AV, Az, Ay Ay -
: Aé‘lequF

A5|at7A||_
Aé‘latfHT
Aé]at_RUD

AL, AV, AX, Ag Ag

The development of equations (59.1) and (59.2) can be seen in Figure 6:

AX
—
Ay, AX, (force) . V,.V,.Y,
An az” X2 YirZ,
A AY, (force) 22/19%0
—Q> —_—
AO =
A_u/> o AZ,(force) [Y=outed
- = 3.0,y
i_V;://y o, D DCM
A ave| O AL, (moment) > v
7 s 2 2 (U,V, W)
AQ.
AQ AM  (moment)
Ay .
AN, (moment) #0.v
————
A 6DoF
is,c.b

i Qayn

Control surface input

esoe)

——0| ——
Jeuipnyibuoy
f=

Figure 6: New scheme including the variations of state vectors and their time derivatives
Anand A7 in closed loop form

In Figure 6, we introduce the following notations for the state vector variations A7 and A7 :

An=[ax By, Az A A6 Ay]'i A=AV, AV, AV, Aj A6 Ay (60)

2.3 AERODYNAMIC FORCES FOR RIGID-TO-RIGID AND RIGID-CONTROL
INTERACTIONS MODE CALCULATIONS

To continue this work, we need to calculate the aerodynamic forces and moments variations for rigid-to-
rigid Q,r and rigid-to-control Q. interaction modes in the inertial system i. Linearization of forces and
Euler angles from the aircraft system of coordinates a into the inertial system i is realized by use of the
small perturbations theory.

The inertial forces variations’ AX;, AY;, and AZ; are written as functions of force variations in the aircraft

RTO-MP-AVT-154 1-17
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system of coordinates X,, Y,, and Z, by use of the CDM in a form similar to the one given by equations
(18). The small perturbation theories are applied to the Euler angles, and then we obtain two sets of
equations for the forces and for the moments, under the following form:

AX, AX, Ag AX, AX,
AY; |=F| AY, |[+F1| AO |=F| AY, |+0=F]| AY, (61.1)
AZ, AZ, Ay AZ, AZ,
and for the moments:
AL, AL, A¢ AL, AL,
AM, |=F| AM, |+F1| AG |=F| AM, |+0=F| AM, (61.2)
AN, AN, Ay AN, AN,

cosg, 0 sing,
where F= 0 1 0 (62)

—-sing, 0 cos,

The forces and moments variations in the aircraft system of coordinates given by equations (59.1) and
(59.2) are replaced in equations (61.1) and (61.2), in which a vector of zeros of dimensions (3x10) is
added, and therefore, the forces and moments are obtained in the inertial system of coordinates i:

Aé‘longiLEF
Aé‘lonngF
A5Iong17AIL
AX, AX; Ag AA?ongHT
AY, |=F-Cl12-| Ay, |+F(C14+CI1-Pl)-| A@ |[+F-DL.| " |+
AZ, Az, Ay ASa_rer (63.1)
Aé]atjEF
Aé‘lathn_
Aé‘lat_HT
A5|atjaUD
AV, Ag
+F-CI1-P-| AV, |+F-CI3-R:| A@ |+Zer0s,,,,«(0 0 0 0 0 0 0 0 0 0
AV, Ay
1-18 RTO-MP-AVT-154
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A9,

long _LEF
Aé‘long _TEF
Ab‘long _AIL
A6,

AL, AX, Ag fong T

i i
A§Iong _RUD

AM, |=F-C22| Ay, |+ F(C24+C21-P1)| AG |+F-D2 +
Vi |rFC ) A er (63.2)

AN, Az, Ay
Aé‘lalfTEF

A6,

lat_ AIL

A5Iat7HT
A5|at7RUD

AV, Ag
+F-C21-P-| AV, |+ F-C23-R+| Af |+Zeros,,,-(0 0 0 0 0 0 0 0 0 0)
AV Ay

z

We arrange equations (63.1) and (63.2) in order to obtain the generalized coordinate vectors’ variations
An and A7 given by equations (60), and the control vectors U and U .

RTO-MP-AVT-154 1-19
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A X,
Ay,
Az,
Ag
A6
AX, Ay
AYi A5|ong|_|_EF
AZ; | _ {F Cl2 F(Cl4+Cl11P1) F Dl} ASigng TeEF .
AL, FC22 F(C24+C21P1) F D2 ASiong an
AM i AélonngT
ANi A§|Ong;7RUD
A 5|at7LEF
A 5|at7TEF
A 5|at7A||_
A 5|at_HT
A 5Iat_RUD
AV,
AV,
AV,
Ag
A6
Ay
0
FCI1P FCI3R 0 0
{F C21P FC23R 0} 0
0
0
0
0
0
0 (64)
0
The system of equations (64) is simulated with the scheme shown in Figure 7.
1-20 RTO-MP-AVT-154
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AXI X;
A_);., AX, 7 A% Y
A?] I. 5'%’ Xiayiazi Zi‘
Ad, AY; g3 ¢
—p» 598 >
Ay | o 28 0
Ay W AZ, 3a >
| O 1 23 DCM g
AV | BiD R >
NI AL A § V, (U, V, W) | xy=
M» :;U o § 3 Ly
vt RS e
AN B b0y > o
R = conditions
1 A 6DoF
iS,C,b
qdyn

[euipnjibuol

Control surfaces

|esele

Figure 7: Scheme with force and moment variations in the aircraft system of coordinates from the inertial system of
coordinates

In order to calculate the aecrodynamic forces Q,r and Q,., we need to write the equation of motion for the
flexible aircraft structure in terms of generalized coordinates, in the following form:

Mﬁ+Dﬁ+Kn+qdynQn =0 (65)
which can be written in a simplified form as:
Mij+Di+Kn+y, = 0 (66)
where the last term of equation (66) is:
Y, =Fuo =0, QT[AX, A, AZ, AL AM, AN]' (67)

The aerodynamic forces Q have real and imaginary parts, and for this reason equation (67) can also be
expressed as:

RTO-MP-AVT-154
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Y, = Qo (Qu + 1Q )7 = Gy Qa7 + Ty %Q. (68)

From the generalized coordinates definition7; = Ael” , where A is the amplitude of motion and w is the

oscillations frequency, we calculate the generalized coordinates derivative with time 7 = ]a)Aej”‘ =ja)77 .
The reduced frequency is given by the following equation:

_ob_ot 69)
vV 2V
We replace o calculated with equation (69) into equation (68) and we obtain:
n 9 .
Y, = qdynQRn + qdyn ;QI = qdynQR’] + qdyn WQl n (70)

The real parts of aerodynamic forces Qg correspond to the state vectors X and control vectors U and the
imaginary parts of aerodynamic forces Q, correspond to the time derivatives of state vectors X and control
vectors U, and therefore we can write:

yl = qdynQrFin + qdynQrI?:u + qdyn err77 + qdyn ercu (71)

. °
VK VK

Equation (71) may be expressed in the form of the second state space equation:

_ R C i) R C ~r U
yl - qdyn (er 2Vk erj(ﬁj-'_qdyn (Qrc ka Qrcj[u] (72)

Equation (64) may be written by use of state vectors 77 and their time derivatives 77 and with control

vectors U and their time derivatives U, as follows:

AX.

AY,

_| 4z |_[F-C12 F(Cl4+CII-P) F-DI](n) (F-CII'P F-CI3:R 0)(7 (73)
W= AL | |F-C22 F-(C24+C21-Pl) F-D2|\u) \F-C21-P F-C23-R 0)\u

AM,

1-22 RTO-MP-AVT-154
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Equation (72) can also be presented in the following form:

u

el oy o2 o o o) (0, 0 @ ] 74

The Q,, and Q, matrices are represented under analytical form (with 6 rows and 16 columns). By
identification of the aerodynamic forces matrices given in equations (73) and (74), we calculate the terms

. .. . . . R
of the real aerodynamic forces for rigid-to-rigid mode interactions Q,; and the terms of the real

R

rc » and thus we obtain:

aerodynamic forces for rigid-to-control mode interactions Q

o F-C12 F-(Cl4+Cl11-P1)| (Qy, QF, .0
" |F-C22 F-.(C24+C21-P)| |Qf, QF . '
F-DI R
Qi:( jz o (75.2)
F-D2 Qr0721
The elements Qts;ll’QrRrJZ’Q|57219Qr$7229Q|f:711’Q|5721 of real aerodynamic forces have the following
analytical forms:
qu,l qu,Z qr1,3 qu,4 qu,S qr],6
QrRr_n: ar,, Qr,, dqr; ;QI’F:JZ: ar,, ans Qah, (76.1)
g, Qr, dn; ar, ans Qn,
qr,, ar,, dr,, ar,, ars Qg
' ' ’ R
Qr?_zlz qrs,l qrs,z qr5,3 ;er_22: qr5,4 qu,S qr5,6 (76.2)
qr6,1 qre,z qr6,3 qr6,4 qr6,5 qr6,6

ar, Qang ane dhy, 9hy ah dhys dhae o Qhgs Qhge
R
Qchl =1qn, dhg dh, Qh,, dh,, ah,, 4h,;; 9L, dh;s dhye (76.3)
an, qans an, Qr,, a5, Qn,, Qn,; q5,, qh,;s QG
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ar,, QQrs AL, ar,, an,, ah,, df,; qr, Of,s dh
R
Qrc_zl =145, QG Oh, A, qf,, O, O, O, df,s  dfse (76.4)
are, Qfss Qe Ofyo Afey Ofgn Al QA OFgys Ofs6

By identification of the imaginary parts of aerodynamic forces err and Qr'C in equations (73) and (74),

we can write:

o _ F-ClI-P F-CI3-R)_ QL[ of .
" |F.C21-P F-C23-R| > e 7

The elements of the imaginary aerodynamic forces Q' | ,Q! Q. Q! Q! | and Q have

rr_11° rr_12° Xrr_21% rr_22% Xrc_11 rc_21

| |

er_ll er_lz
| |

er721 er722

the analytical forms given in the following equations:

aL, AL, gl ar, qLs QA

err_ll = qi2,1 qiz,z qi2,3 > err_lz = qi2,4 qiz,s qiz,e (78.1)
qi,, Qis, Qi qi,, Qi;5 iy
di,, i, di,; qi,, di,s Qi

err721 = qiS,l qis,z qi5,3 5 errfzz = qi5,4 qis,s qi5,6 (78.2)
Qig, Ois, Gigs i, Gigs disg

We next show the calculation of one single term corresponding to the real parts of the aerodynamic forces,
since the same theory is used to calculate all of the terms of the real and imaginary aerodynamic forces.
Please note that the F matrix is given by equations (62) and the C12 matrix is analytically given.

cos, 0 sing, Cs Cs Cg ar, Qr, Qr;
R
Qr n=F-Cl2= 0 1 0 Cs Cs Ce (=0, O, Qn; (79)
—-sin@, 0 cos@, ){C;, C;5 Cy ar,, g, qn;

The coefficients equal to zero are coloured in blue (the first two columns of C12 are zero) while the
coefficients not equal to zero are coloured in red. By identification of the Q? ,; matrix elements expressed

by equation (79) and of the C matrix values given by equations (50) and other equations (not shown, due
to the pages number limitation):
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ar, =0;qr,, =0;qr =C -cos 6 +C6 -sing) =S [_a4,5 'COS(HO _ao)_as,s -Siﬁ(@o —0!0)]

ar, =0;ar,, =0;qr,; =C, s =S - a5 (30)
ar,, =0;qr,, =0;qr,; =—C,; -sin 6, +C;; -cos 6 =S [a“ -sin(6, -, ) —ay; - cos(6, —ao)]

The &’s coefficients terms in equations (80) contain stability and control derivatives as seen in equations

(1)-(6). Therefore, we obtain, for all rigid aerodynamic elements Q, the following table, in which the first
3 elements on column 4 were given in equation (80).

Q: Q

AX; X
» - o e

%» AX, a Vitesses inertielles VX ,Vy ,Vl # ________ Y;
An A_I» . AY. § Positions inertielles X, , Y; , Z; - (R N _.Zl
Ay = . =Z [

AA_>H = AZ, =5 o
A_>\;/I/ ? g § §_ Angles d'Euler @, O,y - y/'
AVyL '<~\] = g Matrice du cosinus directeur DC M  [— i V)Z
A vV, . AL, g El Vitesses en translation \/ Vv
7 A—Z> o L 2 a dane 1o repere avion. Va (UsV, W) | ! Vy=
ady | = = i
A0y | & |AM, g2 S

Ay, - g 4.0,y - O .
AN : - Vi Condmunos
— g
6DoF

|eutpnyiBuol
»
Qam
Ea
£y
o

Surfaces de
commande

fesgle|

Figure 8:Simulation scheme for aerodynamic force calculations from generalized coordinates

X Yi Z;
X 0 S_-(—th -c0s (6, —a,)—Cy, -sin (6, —050))
Y 0 0 S_'Cyh
z |0 0 S_-(th -sin (6, —a,)—Cy, -cos (6, —ao))
L0 0 S_-b-(Clh-cos(@o—a0)+Cnh-sin(@o—ao))
M | 0| 0 Sc-C.

0 0 S_~b-(—C|h-sin(@o—a0)+Cnh-cos(@o—ao))
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@ 0 7 o
X 0 -S.c, 0 -S-C,
Y -si 0 3 Q
S-C, -sing, -S .Cyﬁ S Cy5
z 0 S_ (_letg _leta) 0 S C'ﬁﬁ
L] §-b-C, sing, 0 -S-b-C, S-b-C,
M 0 §.t-(C,, +C,) 0 s-t-C,
N g ; 3 Q
$:b-C, -sing, 0 -S-b-C, S-b-C,
Table 1 Real aerodynamic forces QF
X y 2
X -S.C 0 _C
dy —S . d,
Vo
Y 0 _C 0
5.2
VxO
z S.C 0 _C
Ift, -S. Ift,
Vo
L 0 S | 0
B
Vio
M1 S.c.c, 0 st.c,
X0
N0 Sb-C,
VxO
¢ 0 %
X _S_,.Cdp —S_-Cd S -sin6), -C, 0
q p
Y §‘Cyp 0 S_-(—Cyp -sing, +C, -cos 6’0) 0
Z ~S-Cy, S-Cy, S-sin6,-Cy_ 0
L S_-b-CIp 0 S_-b-(—C|p~sin90+C|r-cosé’o) 0
M ST m, S_-E-Cmq —S_-E-Cmp-sinH0 0
N1 S.bC, 0 S-b:(-C,, sin6, +C, -cosd, ) 0
Table 2 Imaginary aerodynamic forces Q'
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The first simulation scheme (Figure 1) represents a system that uses the stability and control derivatives in
the wind system of coordinates and in which the forces and moments are calculated in the aircraft system
of coordinates. The second simulation scheme (Figure 8) represents an equivalent scheme similar to the
first, in which the states in the inertial system of coordinates are used in the closed loop.

2.4 NUMERICAL LINEARIZATION SCHEME

The formulations already developed in Sections 1-3 will be validated for particular cases where the same
types of stability and control derivatives are given in the wind system of coordinates. A problem appears if
we add, subtract or change a derivative or its initial value in the formulations, because then all the
formulations change. Therefore, we need to develop automatic simulation formulations. We develop a
Matlab algorithm in which all of the above changes in coordinates and linearizations are automatically
realized. We use the ‘dlinmod’ Matlab function which gives, in the state space form, the linearized form of
a system built in Simulink, around a specified trim point condition. The simulation scheme presented in
Figure 9 is equivalent to the scheme presented in Figure 1 and takes into consideration the stability
derivatives given in the wind coordinate system.

u

AF, Transformation of wind AF,
> 4 M., » coord’s system to aircraft "l AM,
> coord’s system

1 3

2
Parameters [« 6 dof <
5 4
Figure 9: Simulation aircraft scheme with stability and control derivatives given in the wind coordinates system

In Block 1 of Figure 9, the forces and moments F,, and M,, are calculated from the stability and control
derivatives given in the wind system of coordinates. To simulate aircraft behavior, we convert these forces
and moments, determined in block 1, to forces and moments in the aircraft coordinate system shown in
block 3, using block 2 for the transformation from the wind coordinate system to the aircraft coordinate
system. The aircraft linear and angular speeds are the block 4 outputs and are calculated from the forces
and moments in the aircraft coordinate system by use of the 6 degrees-of-freedom equations of motion.
Parameters specific to the aircraft in the wind system of coordinates, such as the angle of attack, sideslip
angle, and true airspeed are further calculated in block 5 and used as inputs to block 1 in the aircraft time
simulation.

The scheme presented in Figure 9 around the trim point specified in the simulation is then linearized by
use of the ‘dlinmod’ command in Matlab, where the linear relationship between the inputs U and the
outputs y is obtained under state space form, in which the state vectors

are X = (u,V,W, p,q,r,8,0,¥,%.Y,,Z ) The components of the state vectors X are the linear speeds u, v,

and w, the rates p, ¢, and r, the angles ¢, 8 and  and the three positions X;, y; and z;. The scheme presented
in Figure 9 can further be also represented under state space form in Figure 10.
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u X = Ax+ Bu Yy =Fa M,
— ¥ y =Cx+ Du

A 4

Figure 10: Equivalence with the scheme shown in Figure 9

Then, the state variables x are calculated with the first state space system equations and are further used in
the second equation of the state space system to calculate the outputs y. In this case, we find the next
scheme, equivalent to that shown in Figure 10, in which the block 4 outputs, from the 6 degrees of
freedom (dof) equations of motion (see Figure 9), are used.

As the schemes shown in Figures 9 and 11 are compared, it is obvious that blocks 1, 2, and 4 are contained
in the C and D matrices. The aircraft model thus obtained gives the variations of forces and moments
calculated in the aircraft coordinate system dependent on the inputs U and state vectors X. The matrices

Q,, and Q,., corresponding to rigid-to-rigid and to rigid-to-control mode interactions, respectively, are
determined for aerodynamic forces in this way. The states multiplying these matrices, and the forces and
moments, are calculated in the inertial system of coordinates. The scheme shown in Figure 11 is

redesigned by adding a first block which changes the outputs y;into ¥ and a second block which changes
the states X into the states X;. This new scheme is presented in Figure 12.

u
—>
| v=Cx+Du » y=Fa M,
6 dof P
Figure 11: Equivalent schemes with the Figure 2
u \'
yi= Cixi+ Diu | yitoy y=Fa M,

X t0 X; P 6 dof

4
4

Figure 12: Simulation scheme with forces and moments calculated in the inertial system of coordinates

The changes to the coordinates implemented in the added blocks depend on the trigonometric functions of
Euler angles, more specifically the inputs are related to the outputs by nonlinear functions. The two blocks
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are then further linearized, which requires that the Matlab command ‘dlinmod’ be applied to the two
blocks. For the block ‘X to X;’, a linear relationship is obtained:

X, = DX (81)

which represents a simplified form of a state space system where matrices A, B, and D, are zeros, as this
block has no states. The linearization of block ‘y; to y’ gives:

y=D,y, (82)
By using the blocks shown in Figure 12, and equations (81) and (82), we write:
y=D,y; =D, (Cx +Du)=D,(C,Dx+Du)=D,C,Dx+D,Du (83)
Identifying the matrices given by equation (83) with those given by the state space equations:

C=DCD; D=D,D,

(84)

The C and D matrices are obtained from the linearization presented in Figure 9, and the D; and D,
matrices are obtained by the linearization of two blocks shown in Figure 12. We calculate the C; and
D; matrices with equations (84):

C.=D,'CD,'; D,=D,'D (85)

and the state vector X; is:

Xi :(Xiayiazia¢’9’l//>xi7yi’zi’é’é’l/))-r :[nl’ ﬁl’]T (86)

We can write the aerodynamic force equations for the rigid modes in the following form, similar to
equation (71):

C . C
qdyn |:QrRr77r + Merrnr:| = (qdyanﬁ qdyn Merr j X = CiXi (87)

The real and imaginary parts of the aerodynamic forces corresponding to the rigid modes are obtained by
identification from equation (87):

Qr =Lci (1:6,1:6);  Q =_2Vk C,(1:6,7:12) (88)

dyn dyn
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The control vector U is u :[ch O]T. The real and imaginary parts of the aerodynamic forces

corresponding to the interactions of rigid modes with the control modes are determined with the following
equations:

Qn =iDi; Q. =0 (89)

dyn

The algorithm is presented in the following three steps: 1. We apply the Matlab command ‘dlinmod’ to
each of the 3 blocks in order to obtain C, D, D, and D, matrices; 2. Equations (88) and (89) are used to
calculate the matrices Q,r and Q. and 3. The initial matrices calculated with the Doublet Lattice method,
DLM, or with the Constant Pressure Method, CPM, calculated by finite element software, are replaced
with the matrices obtained with our algorithm. For validation purposes, the algorithm represents the
numerical implementation (shown in Section 4) of analytical implementation presented in Sections 1-3. A
comparison between the obtained values with the analytical formulation and the numerical formulation
presented here is given in the following tables.

X1y|z X y z
X 10]/0]0 0 -614.96 0
y |0/0]0] -81.33 0 468.36
z |0]0]|0 0 -1502.2 0
X 0]|0|0]| -158.72 0 914.06
y 10]0]0 0 -731.29 0
2 |0]0|0] 367.85 0 -2118.3
Table 3 Real part of Q, matrix obtained by analytical linearization
X1y z X y z
X100 '7;'2'5' 0 -614.96 0
y 10]0 0 -81.33 0 468.36
z |00 -4.38E-
o5 0 -1502.2 0
x |00 0 -158.72 0 914.06
y |0]0]| -6.16E- )
23 0 731.29 0
Z 10]0 0 367.85 0 -2118.3
Table 4 Real part of Qr matrix obtained by numerical linearization
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X y z X y z
X -
-0.04 0 -0.65947 0.08 -8.6 0.013892
y 0 -0.50226 0 2.16 0 99.091
Z -
-0.08 0 -1.6109 0.08 -800.16 0.013892
X 0 -0.98022 0 -5412.5 0 3948.3
y - ) _ _
0.9216 0 0.78373 1.3824 15977 0.24005
z 0 2.2717 0 -704.62 0 -2809.5
Table 5 Imaginary part of Q,r matrix obtained by analytical linearization
X y z X y z
X -
-0.04 0| -0.65947 0.08 -8.6 | 0.013892
y 0 -0.50226 0 2.16 0 99.091
Z -
-0.08 0 -1.6109 0.08 | -800.16 | 0.013892
X 0 -0.98022 0 -5412.5 0 3948.3
y -
0.9216 0| -0.78373 1.3824 | -15977 | -0.24005
Z 0 2.2717 0 -704.62 0 -2809.5
Table 6 Imaginary part of Q,r matrix obtained by numerical linearization

We can see that the obtained results are the same. Developing the numerical algorithm allowed us to
verify the partial and final results for 90 flight test conditions®.

CONCLUSIONS

In this paper, we used two approaches: analytical (Sections 1 to 3) and numerical (Section 4) to validate
the aerodynamic force formulations corresponding to rigid-to-rigid and rigid-to-control interaction modes
for aeroservoelasticity studies -- only from knowing the stability and control derivatives in the wind
system of coordinates. These derivatives are dependent on flight regime conditions: Mach number, altitude
and angle of attack. In fact, the aerodynamic forces corresponding to rigid and control interaction modes
calculated with finite element software are replaced with aerodynamic forces calculated using both
formulations presented here.

With another aircraft, and thus with a different set of stability and control derivatives, we will use the
numerical approach combined with the theoretical approach to validate the new formulations. The
numerical approach will likely be much faster than the theoretical development, because successive
linearizations may take quite a long time. The theoretical approach may become much more useful in the
future. The analytical approach developed in Sections 1-3 allows us to obtain the analytical formulas for
all the stability and control derivatives in the inertial system from those calculated in the wind system of
coordinates. Linearizations at the trim condition are performed at each calculation step.

The second approach consists of a numerical linearization of the simulation scheme in the wind reference
system of coordinates. Values of stability and control derivatives obtained with this method and those
calculated analytically with the first method are the same, therefore, we conclude that the expressions
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found for the aerodynamic forces corresponding to rigid and control modes are validated.

A comparison was done between the flutter frequencies and damping values for aeroelasticity studies
(where only the elastic-elastic aecrodynamic forces Q.. were considered) with the flutter frequencies and
damping values for aeroservoelasticity studies (where all the aerodynamic force matrix was considered).
Thus, the common flutter frequencies and damping values were obtained for both aeroelasticity and
aeroservoelasticity studies. Additional flutter modes were obtained for the aeroservoelasticity matrix
where rigid and control modes dynamics were introduced. This comparison was another way to validate
our formulation, but was not presented here in details.
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