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ABSTRACT  

Aeroservoelasticity studies are interactions between three main disciplines: aerodynamics, aeroelasticity 
and servo-controls. In the aeroelasticity area, is known that aerodynamic unsteady forces for a range of 
frequencies and Mach numbers are calculated by use of methods such as Doublet Lattice Method (DLM) 
in the subsonic regime or by Constant Pressure Methods (CPM) in the supersonic regime. These methods 
are usually implemented in finite element aeroelasticity software such as Nastran, STARS or any other 
similar type of software. For aeroelasticity studies, we calculate an aerodynamic unsteady force only for 
the aircraft elastic modes, while for aeroservoelasticity studies, is necessary to calculate these forces for all 
aircraft modes: elastic, rigid, elastic and control, not only for its elastic modes. In order to calculate 
aerodynamic forces for all aircraft modes, we need to consider notions of the flight dynamics theory 
(Newton’s equations) for the aircraft rigid and control modes aerodynamic forces calculations, while the 
methods implemented in finite element aeroelasticity software will be considered for elastic aerodynamic 
forces calculations. Therefore, the unsteady aerodynamic forces corresponding to all aircraft modes will be 
calculated with two different methods: numerical and analytical.  
 
1.0 INTRODUCTION  
 
Aeroservoelasticity studies are very important in the aircraft industry. After an extensive bibliographical 
research in the field, we did not find a well-documented formulation for rigid and control mode 
aerodynamic forces for aeroservoelasticity; therefore we have formulated and validated a novel method in 
this paper.  
Finite element aeroelasticity software such as STARS1 or Nastran2 does not accurately calculate the rigid 
and control mode aerodynamic forces, but they do calculate the elastic mode aerodynamic forces. Our new 
formulation will calculate and validate the aerodynamic rigid and control modes forces on an F/A-18 
aircraft by use of the Doublet Lattice Method (subsonic regime) and the Constant Pressure Method 
(supersonic regime). Thus, rigid and control mode forces calculated with our new formulation will replace 
the rigid and control modes calculated with finite element-based aeroelasticity  software. 
 
The F/A-18 aircraft structure is modelled3 by finite element methods, and 44 frequencies and mode shapes 
are calculated for this aircraft, which are divided into the following three groups: 6 rigid modes (3 
symmetric and 3 anti-symmetric), 28 elastic modes (14 symmetric and 14 anti-symmetric) and 10 control 
modes (5 symmetric and 5 anti-symmetric) 
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The Doublet Lattice Method, DLM, (in subsonic regime) or the Constant Pressure Method, CPM, (in 
supersonic regime) are used to calculate the unsteady aerodynamic forces Q(k, Mach) for various Mach 
numbers and reduced frequencies. The aerodynamic forces correspond to the following modes: 6 rigid 
modes (3 modes in translation and 3 modes in rotation), 10 control modes (5 modes for longitudinal and 5 
modes for lateral motions) and e represent the 28 elastic modes (14 modes in longitudinal motion and 14 
modes in lateral motion).  
The aerodynamic forces for the rigid-to-rigid mode interactions Qrr (dimensions 6 * 6) and for the rigid-to-
control mode interactions Qrc (dimensions 6 * 10), calculated with finite element software Nastran, will be 
replaced by Qrr and Qrc values calculated with the two schemes, analytical and numerical, presented in this 
paper.  

2.0 ANALYTICAL VERSUS NUMERICAL FORMULATIONS 

The analytical formulation is presented in Sections 1 to 3, and the numerical formulation is presented in 
Section 4. Details of the first simulation scheme with stability derivatives in the wind system of 
coordinates are explained in the first section, while Section 2 presents the first scheme with state variables 
introduced in the aircraft closed loop.  Section 3 presents the analytical formulations for the aerodynamic 
forces for rigid-to-rigid and rigid-to-control interactions mode calculations. 

 

2.1 First simulation scheme with stability derivatives in the wind system of coordinates 
 
The detailed first scheme is shown in Figure 1: 
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Figure 1:           First simulation scheme with the stability and control coefficients calculated in the wind 

coordinates system 
 
  This scheme can be written in its equivalent form shown in Figure 2. 
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Figure 2:  Simplification of the scheme shown in Figure 1 

 
The details of Blocks 1 to 9 are next presented.  
 
Block 1 description 
 
Two sets of stability and control derivatives in the wind coordinate system are known, provided by NASA 
DFRC (Dryden Flight Research Center) for various flight conditions characterized by Mach numbers, 
altitudes and angles of attack. We express the aircraft behaviour with the second state space matrix 
equation:  

    [ ] [nasa nasa nasa nasaA B A B A_t]x x
y x u

u u
⎡ ⎤ ⎡

= + = =
⎤

⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

                                      (1) 

Where the A_t matrix has the dimensions (6*19), and Anasa is the stability derivative coefficients matrix of 
dimensions (6 x 9): 
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and the control derivative coefficients matrix Bnasa has the dimensions (6 x 10) and is  divided into two 
matrices corresponding to the longitudinal and  lateral aircraft motion, which are denoted by  Blong_nasa and 
BBlat_nasa. Therefore, Bnasa is written as _ _B B Bnasa long nasa lat nasa⎡ ⎤= ⎣ ⎦  where Blong_nasa is a (6*6) matrix 

containing the derivatives of the same coefficients as the ones of Anasa (which are CL, CM, CN, CD, CLft, CY) 
with respect to the longitudinal control surfaces δlong_AIL, δlong_HT, δlong_RUD, δlong_LEF and δlong_TEF,; Blat_nasa is 
a (6*6) matrix containing the derivatives of the same coefficients as the ones of Anasa (which are CL, CM, 
CN, CD, CLft, CY) with respect to the lateral control surfaces δlat_AIL, δlat_HT, δlat_RUD, δlat_LEF and δlat. The 
output, state, and input vectors are given by the following equations:  
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The Taylor series approximations of stability and control derivatives at the trim position ΔCL, ΔCM, ΔCN, 
ΔCD, ΔCLift, and ΔCY can be written as follows:  
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The variations of all stability coefficients are written under similar forms as the ones given by equations 
(6). 
 
Block 2 description 
The variations of forces and moments are written as a function of their stability and control derivatives as 
follows: 
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where the forces variations on the three axes are [ ]w w wX Y ZΔ Δ Δ  and the moments variations on all 

three axes are [ ]w w wL M NΔ Δ Δ , and where SqSVS dyn==
2

2ρ
. 

Block 3 description 
 
It is well known in this field4 that an aircraft’s system of coordinates (xa, ya, za) is related to the wind 
coordinate system (xw, yw, zw) by the following two successive rotations of the coordinate system (xw, yw, 
zw). 1. A first rotation with sideslip angle β around the zw axis to obtain the intermediate coordinate system 
(x’y’z’) and 2. A second rotation with attack angle α around the y’ axis to obtain the aircraft coordinate 
system (xa, ya, za), which gives: 
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The Xa and Za forces have opposite signs (see equations 9.1), while the La, Ma, and Na moments have the 
same sign (see equations 9.2) with respect to the classical formulation (equations (8)), which is due to their 
orientations, as given by NASA DFRC. 
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                                                          (9.2) 
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Equations (9.1) and (9.2) are linearized around the equilibrium position (trim) of the F/A-18 aircraft by the 
small perturbations theory, in which the index of any quantity at equilibrium is denoted by 0 and the 
variation of a quantity around its equilibrium position is denoted by Δ. The angles of attack and sideslip 
angles are expressed with this theory as follows:  

 0

0

α α α
β β β

= + Δ⎧
⎨ = + Δ⎩

                     (10) 

The sideslip angle at equilibrium 0β  given by the NASA DFRC is equal to 0, and therefore we can write 
the sideslip angle β as a function of its small variation Δβ: 

 0

0

cos cos( ) cos 1
sin sin( ) sin

β β β β
β β β β

= + Δ Δ

= + Δ Δ Δβ
         (11) 

The aircraft forces X, Y, Z and moments L, M, N calculated in the aircraft system a and in the wind system 
w are also written by use of the small perturbations theory, such as:  
Xa = Xa0 + ΔXa  ,…,    La = La0 + ΔLa  ,…,  Xw = Xw0 + ΔXw,, …, Lw = Lw0 + ΔLw                                      (12)                        
The forces X0, Y0, Z0 and the moments L0, M0, N0 at equilibrium are zeros in the aircraft system a and in 
the wind system w, and the angle of attack Δα and sideslip angle  Δβ  variations are also equal to zero. We 
introduce these last values into equations (9)-(12), and we obtain the following system of equations: 
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where  has the following form :   1mC
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We replace the force and moment variations in the wind system of coordinates ΔXw, ΔYw, ΔZw, ΔLw, ΔMw, 
and ΔNw as function of stability coefficients variations given by equation (7) into the right hand side of 
equation (13) and we obtain:  

  (15)
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where the  matrix has the following form:  mC
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 (16) 

Block 4 description 
 
The six degree-of-freedom block refers to the equations of motion of a rigid body in six degrees of 
freedom. The theory can be found in the literature4. The Simulink toolbox is used here as Block 4, and is 
composed of five blocks, 4.1 to 4.5. 
 
Blocks 4.1 and 4.2 descriptions 
 
The origin of the aircraft system of coordinates, a, is the aircraft center of gravity. The inertial system of 
coordinates is fixed to the Earth and is denoted by i. The aircraft equations of motion are obtained with 
Newton’s second law: The sum of the external forces acting on an aircraft is equal to the momentum rate 
of change of the momentum of the aircraft over time (Block 4.1). The sum of the external moments4 acting 
on an aircraft is equal to the angular momentum rate of change of the aircraft over time (Block 4.2).  
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Figure 3:     Description of Block 4 details on six degree-of-freedom dynamics 
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Block 4.3 description 
The Cosine Director Matrix CDM is calculated from the Euler roll, pitch and yaw angles φ, θ, and ψ  in 
Block 4.3, and is used in Block 4.4.  

, ,φ θ ψ , ,φ θ ψ

 
Figure 4: Scheme of Block 4.3 
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Block  4.4  description 
The linear speeds Vx, Vy and Vz in the inertial system of coordinates i are calculated as a function of the 
linear speeds u, v, and w in the aircraft systems a by three successive rotations: one first rotation with the 
yaw angle ψ around the za axis, a second rotation with the pitch angle θ  around the ya axis and a third 
rotation with the roll angle φ around the xa axis, and we obtain:   

                                                     (18) TCDM
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V w

⎛ ⎞ ⎛ ⎞
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⎝ ⎠ ⎝ ⎠

v

Block 4.5 description 

Block 4.5 relates the Euler angles φ, θ, and ψ ,  and the angular speeds p, q, and r with the Euler time 
derivatives ,φ θ , and ψ  by use of the following equation: 

    
1 sin tan cos tan
0 cos sin

sin cos0
cos cos

p
q
r

φ φ θ φ θ
θ φ φ
ψ φ φ

θ θ

⎛ ⎞
⎜ ⎟⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟= −⎜⎜ ⎟ ⎜ ⎟

⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎜ ⎟
⎝ ⎠

⎟                          (19) 

Block 5 description 
In Block 5, we calculate the variations of the aircraft’s true airspeed V, of the angle of attack α,  and of the 
sideslip angle β. In order to calculate these variations, we first calculate V, α, and β as functions of linear 
speeds in translation u, v, and w in the aircraft system of coordinates a4: 

                          2 2 2 2 2; arctan( / ); arctan / ( )V u v w w u v u wα β ⎡ ⎤= + + = = +⎣ ⎦
                           (20) 

The theory of small perturbations is applied to the terms V, α, β, u, v, and w. 
5.1    True airspeed variation ΔV 
We replace the speeds given by the perturbation theory in the first squared equation of the system of 
equations (20):  
     (21) ( ) ( ) ( ) (2 2 2

0 0 0 0V V u u v v w w+ Δ = + Δ + + Δ + + Δ )2

2
0

At equilibrium we write: 
 2 2 2

0 0 0V u v w= + +     (22) 

The square products of speed variations Δu2, Δv2, Δw2, and 2VΔ  in equation (21) can be neglected, as they 
are very small. Then, we divide equation (21) by 2V0 and we obtain:  
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 0 0 0

0 0 0

u v wV u v
V V V

Δ = Δ + Δ + Δw

0

 (23) 

At equilibrium, the components u0 and w0 of the true airspeed V0 can be written as a function of the angle 
of attack α0 as follows: 
 0 0 0 0 0cos ; sinu V w Vα α= =               (24) 
The researchers at NASA DFRC considered in their calculations β0 = 0, so that the component v0 is equal 
to zero: 
 0 0 0sin 0v V β= =               (25) 
We replace equations (24) and (25) into equation (23) and we obtain: 
          0 0cos sinV u wα αΔ = Δ + Δ      (26) 
 
5.2    Angle of attack variation Δα 
The second equation of system (20) can also be written in the following form:  
 sin cosu wα α=     (27) 
At equilibrium, equation (27) can be expressed as: 
                                                        0 0 0sin cosu w 0α α=   (28) 
We apply the perturbation theory to the quantities u, v and α   (for example u = u0 + Δu, etc.). We further 
replace these quantities, equations (24) and (28) in equation (27). The products of small quantity 
variations, such as Δα Δu and Δα Δw are neglected. We take into account the trigonometric equality sin2α0 
+ cos2α0 = 1 and the trigonometric functions for small angles of attack variations (cos Δα = 1 and sin Δα = 
Δα), therefore we obtain the variation of the angle of attack as follows: 

                                  0

0 0

sin cosu
V V

0 wα αα −
Δ = Δ + Δ                                                                               (29) 

5.3   Sideslip angle variation Δβ   
The third equation of the system of equations (20) can be written, for small variations of Δβj (and for 

0 0β = ), as : 

                                                        
2 2

tan v
u w

β βΔ Δ =
+

                                                                     (30) 

We express βΔ  in the form of the products sum of the β derivatives with respect to u, v, and w at 
equilibrium and the small perturbations of u, v, and w:  
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                    (31) 

The expressions of β derivatives at equilibrium are calculated by the derivation of equation (45), where v0 
= 0, , and we obtain: 2 2
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2 2 2 2 2 22 2
0 0 0 0 0 0 0 00 0

2 2
0 0

0 02 2 2 3
0 0 0 0

2 2
0 0

1 1 1 2 0  
2 ( )1

1 1

1

1 1 1 2 0 
2 ( )1

v u
vu u w

u w

u w u w
vv u w vu w

u w

v w
vw u w

u w

β

β

β

∂⎛ ⎞ ⎡ ⎤= ⋅ ⋅ − ⋅ =⎜ ⎟ ⎢ ⎥∂⎝ ⎠ ⎣ ⎦ ++
+

+ +∂⎛ ⎞ = ⋅ = =⎜ ⎟∂ + +⎝ ⎠ ++
+

∂⎛ ⎞ ⎡ ⎤= ⋅ ⋅ − ⋅ =⎜ ⎟ ⎢ ⎥∂⎝ ⎠ ⎣ ⎦ ++
+

1
u w V

=
+

   (32) 
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We replace the system of equations (32) in equation (31) and we obtain: 

 
0

1 v
V

βΔ = Δ   (33) 

Finally, ΔV, Δα, and Δβ, from equations (26), (29) and (33), respectively, are rearranged in the form of a 
matrix system of equations:  

 
0 0

0 0

0 0

0

cos 0 sin
sin cos0

10 0

V u
v

V V
w

V

α α
α αα

β

⎛ ⎞
⎜ ⎟
⎜ ⎟Δ Δ⎛ ⎞ ⎛⎜ ⎟−⎜ ⎟ ⎜Δ = Δ⎜ ⎟⎜ ⎟ ⎜
⎜ ⎟⎜ ⎟ ⎜Δ Δ⎝ ⎠ ⎝⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

⎞
⎟
⎟
⎟
⎠

             (34) 

We add the system of equations (34) to the initial equations of the Block 4 output variations Δu, Δv, Δw, 
Δxi, Δyi, Δzi, Δp, Δq, Δr, Δφ, Δθ, and Δψ, which become the Block 5 inputs, and we obtain a higher order 
matrix system of equations: 

    (35)

i

i

i
m

u
v

q
w
x

V
y

z H
BH

p
p

q
r

r

α

θ

β
φ

φ
θ
ψ

Δ⎛ ⎞
⎜ ⎟Δ⎜ ⎟Δ⎛ ⎞ ⎜ ⎟Δ⎜ ⎟Δ ⎜ ⎟⎜ ⎟ Δ⎜ ⎟⎜ ⎟Δ ⎜ ⎟Δ⎜ ⎟
⎜ ⎟Δ⎜ ⎟ Δ = Δ⎜ ⎟⎜ ⎟ =Δ ⎜ ⎟⎜ ⎟ Δ
⎜ ⎟Δ⎜ ⎟ Δ⎜ ⎟⎜ ⎟Δ ⎜ ⎟⎜ ⎟ Δ⎜ ⎟Δ⎜ ⎟
⎜ ⎟Δ⎜ ⎟Δ ⎜ ⎟⎝ ⎠ Δ⎜ ⎟
⎜ ⎟Δ⎝ ⎠

where 

 

0 0

0 0

0 0

0

0 0 0 0 0 0 0 1 0 0 0 0
sin cos0 0 0 0 0 0 0 0 0 0

cos 0 sin 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0

10 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

m

V V

B

V

α α

α α

⎛ ⎞
⎜ ⎟
⎜ ⎟−
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 (36) 

Block 6 description  
The initial parameters of the matrix system of equations (35) are given by NASA DFRC in the stability 
and control derivative files for each flight condition characterized by the Mach number, altitude and the 
angle of attack: 

[ ] TT
0 0 0 0 0 0 0 0 0 0_ 0_ 0_ 0_0 0 0 0 0nasa nasa nasa nasaq V H p r V Hα θ β φ α θ⎡ ⎤=⎣ ⎦                    (37) 
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Block 7 description 
We calculate the air density ρ  as a function of altitude H, and we obtain5:   

 

0 1

0 0

1

g
LRLH

T
ρ
ρ

−
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

     (38) 

where ρ0 is the air density at sea level, L is the temperature lapse rate, T0  is the air temperature at sea level, 
H is the altitude,  R is the gas constant and g0 is the gravitational constant at  sea level. 
Block 8 description 
The dynamic pressure qdyn is calculated4 as a function of the aircraft’s true airspeed V and the air density ρ. 
Block 9 description 
The control surface inputs are excited with various signals. The control surfaces for the F/A-18 aircraft 
analyzed here are: the Leading Edge LE flaps LEFlef δΔ = Δ , the Trailing Edge TE flaps TEFtef δΔ = Δ , 

the ailerons AILail δΔ = Δ , the horizontal tail HTht δΔ = Δ , and the rudder RUDrud δΔ = Δ . One signal is 

used at a time on the aircraft control inputs, to give a deviation of 05±  around the equilibrium aircraft 
position (trim) for its longitudinal and lateral aircraft motion in order to observe the forces and moments 
variation over time. For the longitudinal motion, a signal was given on the horizontal tail, and for the 
lateral motion a signal was given on the ailerons.  
 
2.2 STATE VARIABLES INTRODUCTION IN CLOSED LOOP 
 
We next develop a second formulation from the first formulation, in order to obtain the vectors of the 
generalized coordinates and their time derivatives in closed loop form: 
 ( , , , , , ) ; ( , , , , , )T

i i i x y zx y z V V V Tη φ θ ψ η φ θ ψ= Δ Δ Δ Δ Δ Δ = Δ Δ Δ Δ Δ Δ   (39) 
The arrangement of stability coefficients on lines 1 to 6 of the matrices used in the first formulation 
is:  (see equation (7)). In order to obtain the second formulation, it is necessary to 

rearrange the order of the stability coefficients as follows: 

, , , , ,L M N D Lift YC C C C C C
, , , , ,D Y Lift L M NC C C C C C .  Therefore, the 

notations Aint , BBlong_int, and Blat_int are introduced for the intermediate matrices A, Blong, and Blat, in which 
the order of the coefficients is rearranged.  
 
We show below only the Aint matrix, while Blong_int  (6*6) matrix contains the derivatives of the same 
coefficients as the ones of Aint with respect to the longitudinal control surfaces δlong_AIL, δlong_HT, δlong_RUD, 
δlong_LEF and δlong_TEF, and BBlat_nasa is a (6*6) matrix containing the derivatives of the same coefficients as 
the ones of Aint with respect to the lateral control surfaces δlat_AIL, δlat_HT, δlat_RUD, δlat_LEF and δlat_TEF. 

int

D D D D D D D D D

Y Y Y Y Y Y Y Y Y

Lift Lift Lift Lift Lift Lift Lift Lift Lift

L L L L L L L

C C C C C C C C C
q V H p r

C C C C C C C C C
q V H p r

C C C C C C C C C
q V H p rA

C C C C C C C
q V H p

α θ β ϕ

α θ β ϕ

α θ β

α θ

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
=

∂ ∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂

ϕ

L L

M M M M M M M M M

N N N N N N N N N

C C
r

C C C C C C C C C
q V H p r

C C C C C C C C C
q V H p r

β ϕ

α θ β ϕ

α θ β

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥∂ ∂
⎢ ⎥∂ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
⎢ ⎥

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦ϕ

             (40) 

The intermediate matrix Am_int for the Am matrix is now written as follows: 
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4,1 4,2 4,19

6,1 6,2 6,19

5,1 5,2 5,19
_ int int _ int _ int 1_ int 2 _ int

1,1 1,2 1,19

2,1 2,2 2,19

3,1 3,2 3,19

...

...

...
      

...

...

...

m long lat m m

a a a
a a a
a a a

A A B B A A
a a a
a a a
a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

⎡ ⎤ ⎡= = =⎢ ⎥⎣ ⎦ ⎣
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

⎤⎦

]

 (41) 

where  is the stability coefficients matrix and its analytical formulation is given in equation (42.1). 

The  matrix is the control coefficients matrix  and its analytical form is expressed 
by equation (42.2).  

1_ intmA

2 _ intmA _ int _ int[   long latB B

      (42.1) 

4 ,1 4 ,2 4 ,9

6 ,1 6 ,2 6 ,9

5,1 5,2 5,9
1 _ int

1,1 1,2 1,9

2 ,1 2 ,2 2 ,9

3,1 3,2 3,9

...

...

...

...

...

...

m

a a a
a a a
a a a

A
a a a
a a a
a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

4,10 4,11 4,19

6,10 6,11 6,19

5,10 5,11 5,19
2 _ int _ int _ int

1,10 1,11 1,19

2,10 2,11 2,19

3,10 3,11 3,19

...

...

...
  

...

...

...

m long lat

a a a
a a a
a a a

A B B
a a a
a a a
a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

⎡ ⎤= = ⎢ ⎥⎣ ⎦
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (42.2) 

Then, the second equation of a state space system may be written by use of equations (42.1) and (42.2) in 
the rearranged order, as follows: 

             

_

_

_

_

_
1_ int 2_ int

_

_

_

_

_

long LEF

long TEF

long AILD

long HTY

long RUDLift
m m

lat LEFL

lat TEFM

lat AILN

lat HT

lat RUD

q

C
V

C
C

A AH
C

p
C

r
C

δ
δ

α
δ
δ

θ
δ
δ
δ
δ

β
δ

φ
δ

Δ⎛
Δ⎛ ⎞ ⎜ Δ⎜ ⎟ ⎜Δ⎜ ⎟ ΔΔ⎛ ⎞ ⎜ ⎟Δ⎜ ⎟ ΔΔ ⎜ ⎟⎜ ⎟ Δ⎜ ⎟⎜ ⎟ ΔΔ ⎜ ⎟= +Δ⎜ ⎟ ΔΔ ⎜ ⎟⎜ ⎟ Δ⎜ ⎟⎜ ⎟ ΔΔ ⎜ ⎟⎜ ⎟ Δ⎜ ⎟ ⎜ ⎟ ΔΔ⎝ ⎠ Δ⎜ ⎟ Δ⎜ ⎟Δ⎝ ⎠ Δ⎝

⎞
⎟
⎟

⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

⎠

  (43) 

We replace the left hand side term of equation (35) in the first term on the right hand side of equation (43) 
in order to obtain another set of state vectors x in the second equation of the state space system of 
equations, and we obtain: 
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                                                            (44) 

_

_

_

_

_
1 _ int 2 _ int

_

_

_

long LEF

long TEF

long AILD i

long HTY i

long RUDLift i
m m m

lat LEFL

lat TEFM

latN

u
v
w

C x
C y

C z H
A B A

C p
C q
C r

δ
δ
δ
δ
δ
δ
δ
δ

φ
θ
ψ

Δ⎛ ⎞
⎜ ⎟ ΔΔ⎜ ⎟
⎜ ⎟ ΔΔ
⎜ ⎟ ΔΔ Δ⎛ ⎞ ⎜ ⎟

⎜ ⎟ ⎜ ⎟ ΔΔ Δ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ΔΔ Δ = Δ⎜ ⎟= +⎜ ⎟ ⎜ ⎟ ΔΔ Δ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ΔΔ Δ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ ΔΔ Δ⎝ ⎠ ⎜ ⎟

⎜ ⎟Δ
⎜ ⎟Δ⎜ ⎟
⎜ ⎟Δ⎝ ⎠

_

_

AIL

lat H T

lat RUD

δ
δ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜
⎜
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟Δ⎜ ⎟
⎜ ⎟Δ⎝ ⎠

⎟
⎟

We replace the vector output given on the left hand side of equation (44) in the right hand side term of 
equation (15) in order to calculate the forces and moments in the aircraft system of coordinates:  

    (45) 

_

_

_

_

_
1_ int 2_ int

_

_

long LEF

long TEF

long AILa i

long HTa i

long RUDa i
m m m m m

lat LEFa

lat TEFa

lata

u
v
w

X x
Y y
Z z H

C A B C A
L p
M q
N r

δ
δ
δ
δ
δ
δ
δ
δ

φ
θ
ψ

Δ⎛ ⎞
⎜ ⎟ ΔΔ⎜ ⎟
⎜ ⎟ ΔΔ
⎜ ⎟ ΔΔ Δ⎛ ⎞ ⎜ ⎟

⎜ ⎟ ⎜ ⎟ ΔΔ Δ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ΔΔ Δ = Δ⎜ ⎟= +⎜ ⎟ ⎜ ⎟ ΔΔ Δ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ΔΔ Δ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ ΔΔ Δ⎝ ⎠ ⎜ ⎟

⎜ ⎟Δ
⎜ ⎟Δ⎜ ⎟
⎜ ⎟Δ⎝ ⎠

_

_

_

AIL

lat HT

lat RUD

δ
δ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟Δ⎜ ⎟
⎜ ⎟Δ⎝ ⎠

The following notations are introduced:  
                                                                             (46) 1_ int 2_ int;m m m m mC C A B D C A= =

and we obtain: 

     (47) 
_

_

_

_

_

_

_

_

_

_

long LEF

long TEF

long AILa i

long HTa i

long RUDa i

lat LEFa

lat TEFa

lat AILa

lat HT

lat R

u
v
w

X x
Y y
Z z H

C D
L p
M q
N r

δ
δ
δ
δ
δ
δ
δ
δ
δφ
δθ

ψ

Δ⎛ ⎞
⎜ ⎟ ΔΔ⎜ ⎟
⎜ ⎟ ΔΔ
⎜ ⎟ ΔΔ Δ⎛ ⎞ ⎜ ⎟

⎜ ⎟ ⎜ ⎟ ΔΔ Δ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ΔΔ Δ =⎜ ⎟= +⎜ ⎟ ⎜ ⎟ ΔΔ Δ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ΔΔ Δ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ ΔΔ Δ⎝ ⎠ ⎜ ⎟

Δ⎜ ⎟Δ
⎜ ⎟ ΔΔ⎜ ⎟
⎜ ⎟Δ⎝ ⎠

UD

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

The scheme shown in the next figure represents the conversion of the scheme shown in Figure 1 by use of 
equations (39)-(47), and has the 12 state vectors x given by equation (39) in the closed loop. We obtained 
the C and D matrices, which characterize the linear system at trim condition. These matrices are presented 
in detail next.  
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vΔ
wΔ

φΔ
rΔ
qΔ
pΔ

izΔ
iyΔ
ixΔ

( )aX forceΔ

( )aY forceΔ

( )aZ forceΔ

( )aN momentΔ

( )aM momentΔ

( )aL momentΔ

rudΔ
htΔ
ailΔ
tefΔ
lefΔ
rudΔ
htΔ
ailΔ
tefΔ
lefΔ

∑

uΔ

θΔ
ψΔ

, ,

, ,
x y z

i i i

V V V

x y z

, ,
DCM
φ θ ψ

( , , )aV u v w

 , ,

 , ,

p q r

p q r

u
v
w

ix

iy

iz
p
q
r

φ
θ
ψ

dynq
, ,S c b

 
Figure 5:     Simulation scheme with 12 state vectors in closed loop 

 
We can represent the terms of the C and D matrices analytically. The C matrix has the following analytical 
form: 

                                     (48) 1

11 12 13 14
21 22 23 24m m m

C C C C
C C A B

C C C C
⎛ ⎞

= = ⎜
⎝ ⎠

⎟

where the C11, C12, C13, C14, C21, C22, C23, and C24 matrices are represented under analytical forms. 
The BBm matrix is expressed by equation (51), the Am1_int matrix is given by equation (42.1), and their 
product is written as follows: 

4,80 0
4,2 4,3 0 4,2 4,3 0 4,5 4,6 4,1 4,7 4,9 4,4

0 0 0

6,80 0
6,2 6,3 0 6,2 6,3 0 6,5 6,6 6,1 6,7 6,9 6,4

0 0 0

5,80 0
5,2 5,3 0 5,2 5

0 0 0
1

sin coscos sin 0 0 0

sin coscos sin 0 0 0

sin coscos

m m

a
a a a a a a a a a a

V V V
a

a a a a a a a a a a
V V V

a
a a a a

V V V
A B

α αα α

α αα α

α αα

− + +

− + +

− + +

=
,3 0 5,5 5,6 5,1 5,7 5,9 5,4

1,80 0
1,2 1,3 0 1,2 1,3 0 1,5 1,6 1,1 1,7 1,9 1,4

0 0 0

2,80 0
2,2 2,3 0 2,2 2,3 0 2,5 2,6 2,1 2,7 2,9 2,4

0 0 0

0
3,2

0

sin 0 0 0

sin coscos sin 0 0 0

sin coscos sin 0 0 0

sin

a a a a a a

a
a a a a a a a a a a

V V V
a

a a a a a a a a a a
V V V

a a
V

α

α αα α

α αα α

α

− + +

− + +

− + 3,8 0
3,3 0 3,2 3,3 0 3,5 3,6 3,1 3,7 3,9 3,4

0 0

coscos sin 0 0 0
a

a a a a a a a a
V V

αα α

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟+⎜ ⎟
⎝ ⎠

             (49) 

The C matrix is the product of the Cm matrix given by equation (24) and the Am1Bm matrices’ product 
given by equation (49), while the C matrix analytical elements are found by identification. Due to the 
pages number limitations, we give here only the C11 matrix elements:  

2
4,2 0 5,2 0 5,3 02

1,1 4,3 0
0 0

sin 2 sin sin 2
cos ;

2 2
a a a

c S a
V V

α α α
α

⎛ ⎞
= − − +⎜ ⎟⎜ ⎟

⎝ ⎠

    4,8 0 5,8 0
1,2

0 0

cos sina a
V V

α
c S

α⎛ ⎞
= − +⎜ ⎟

⎝ ⎠
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2
4,2 0 4,3 0 5,2 0 2

1,3 5,3 0
0 0

cos sin 2 sin 2
sin ;

2 2
a a a

c S a
V V

α α α
α

⎛ −
= − + +⎜⎜ ⎟

⎝ ⎠

⎞
⎟                                                                               (50) 

6,2 0 6,8 6,2 0
2,1 6,3 0 2,2 2,3 6,3 0

0 0 0

sin cos
cos ; ; sin

a a a
c S a c S c S a

V V V
α α

α α
⋅ ⋅⎛ ⎞ ⎛

= ⋅ − + ⋅ = ⋅ = ⋅ + ⋅⎜ ⎟ ⎜
⎝ ⎠ ⎝

⎞
⎟
⎠
 

2
4,2 0 4,3 0 5,2 0 2

3,1 5,3 0
0 0

sin sin2 sin2
cos ;

2 2
a a a

c S a
V V

α α α
α

⎛ ⎞
= − + −⎜ ⎟⎜ ⎟

⎝ ⎠

  4,8 0 5,8 0
3,2

0 0

sin cosa a
c S

V V
α α⎛ ⎞

= − −⎜ ⎟
⎝ ⎠

 

The D matrix may be written under the form [ ]1 2 TD D D= , where  and  are:  1D 2D

           (51.1) 
1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 1,10

2,1 2,2 2,3 2,4 2,5 2,6 2,7 2,8 2,9 2,10

3,1 3,2 3,3 3,4 3,5 3,6 3,7 3,8 3,9 3,10

1
d d d d d d d d d d

D d d d d d d d d d d
d d d d d d d d d d

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

                (51.2) 
4,1 4,2 4,3 4,4 4,5 4,6 4,7 4,8 4,9 4,10

5,1 5,2 5,3 5,4 5,5 5,6 5,7 5,8 5,9 5,10

6,1 6,2 6,3 6,4 6,5 6,6 6,7 6,8 6,9 6,10

2
d d d d d d d d d d

D d d d d d d d d d d
d d d d d d d d d d

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

The matrix [ ] 2_ int1 2 T
m mD D D C A= =  is the product of the  matrix given by equation (16) and 

the  given by equation (42.2). The elements of matrices  and  are calculated by 
identification, and we show here only the first elements of D1 matrix.  

mC

2_ intmA 1D 2D

                    

( ) ( )
( ) ( )
( ) ( )

1,1 4,10 0 5,10 0 1,2 4,11 0 5,11 0

1,3 4,12 0 5,12 0 1,4 4,13 0 5,13 0

1,5 4,14 0 5,14 0 1,6 4,15 0 5,15 0

1,7 4,

cos sin ; cos sin

cos sin ; cos sin

cos sin ; cos sin

d S a a d S a a

d S a a d S a a

d S a a d S a a

d S a

α α α α

α α α α

α α α

= ⋅ − ⋅ + ⋅ = ⋅ − ⋅ + ⋅

= ⋅ − ⋅ + ⋅ = ⋅ − ⋅ + ⋅

= ⋅ − ⋅ + ⋅ = ⋅ − ⋅ + ⋅

= ⋅ −( )
α

( )
( ) ( )

16 0 5,16 0 1,8 4,17 0 5,17 0

1,9 4,18 0 5,18 0 1,10 4,19 0 5,19 0

cos sin ; cos sin

cos sin ; cos sin

a d S a a

d S a a d S a a

α α α α

α α α

⋅ + ⋅ = ⋅ − ⋅ + ⋅

= ⋅ − ⋅ + ⋅ = ⋅ − ⋅ + ⋅ α

                          (52) 

The C matrix (only its C11 elements are shown in equations (50)) and the D matrix (only its first elements 
are shown in equations (52)) are further replaced in equation (47). Therefore, we obtain the two matrix 
equations for the variations of forces ΔXa, ΔYa et ΔZa and moments ΔLa, ΔMa et ΔNa in the aircraft system 
of coordinates: 

                    

_

_

_

_

_

_

_

_

_

_

11 12 13 14 1

long LEF

long TEF

long AIL

long HT
a i

long RUD
a i

lat LEF
a i

lat TEF

lat AIL

lat HT

lat RUD

X u x p
Y C v C y C q C D
Z w z r

δ
δ
δ
δ

φ
δ

θ
δ

ψ
δ
δ
δ
δ

Δ⎛
Δ
Δ
Δ

Δ Δ Δ Δ Δ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
Δ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟Δ = Δ + Δ + Δ + Δ +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ Δ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟Δ Δ Δ Δ Δ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ Δ
Δ
Δ
Δ⎝

⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

⎟

⎠

                   (53.1) 
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_

_

_

_

_

_

_

_

_

_

21 22 23 24 2

long LEF

long TEF

long AIL

long HT
a i

long RUD
a i

lat LEF
a i

lat TEF

lat AIL

lat HT

lat RUD

L u x p
M C v C y C q C D
N w z r

δ
δ
δ
δ

φ
δ

θ
δ

ψ
δ
δ
δ
δ

Δ⎛
Δ
Δ
Δ

Δ Δ Δ Δ Δ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
Δ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟Δ = Δ + Δ + Δ + Δ +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ Δ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟Δ Δ Δ Δ Δ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ Δ
Δ
Δ
Δ⎝

⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

⎟

⎠

                     (53.2) 

 
In equations (53.1) and (53.2), there are terms u, v, w, p, q, and r in the aircraft coordinate system and 
terms xi, yi, zi, φ, θ, and ψ in the inertial coordinate system. We need to obtain these terms in the same 
system of coordinates, and we chose the inertial system of coordinates. Therefore, we convert the linear 
and angular speeds terms (u, v, w, p, q, and r) from the aircraft coordinates system a, into the inertial 
coordinate system i. The speeds u, v, and w in the aircraft system of coordinates a are obtained, using 
linearization, from the linear speeds and Euler angles in the inertial system of coordinates i. Equation (18) 
can be written in the following form:   

                  (54) 
cos cos cos sin sin

sin sin cos cos sin sin sin sin cos cos sin cos
cos sin cos sin sin cos sin sin sin cos cos cos

x

y

za i

u V
v V
w V

θ ψ θ ψ θ
φ θ ψ φ ψ φ θ ψ φ ψ φ θ
φ θ ψ φ ψ φ θ ψ φ ψ φ θ

−⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟= − +⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟+ −⎝ ⎠ ⎝ ⎠⎝ ⎠

The small perturbations theory is applied to the following quantities: u, v, w, Vx, Vy, Vz, p, q, and r. The roll 
and yaw angles at equilibrium given by NASA DFRC are equal to zero, φ0, and ψ0.  The trigonometric 
function (sine and cosine) assumptions for small angles Δφ, Δθ, and Δψ are also considered. The products 
of small terms such as φ ψΔ Δ , xVθΔ Δ , zVθΔ Δ , xVφΔ Δ  and yVφΔ Δ  are neglected, and we consider the 

equilibrium speeds  and  to be zero. We replace these assumptions in equations (54) and we obtain: 
0yV

0zV

                 1
x

y

z

u V
v P V P
w V

φ
θ
ψ

Δ Δ Δ⎛ ⎞ ⎛ ⎞ ⎛
⎜ ⎟ ⎜ ⎟ ⎜Δ = Δ + Δ⎜ ⎟ ⎜ ⎟ ⎜
⎜ ⎟ ⎜ ⎟ ⎜Δ Δ Δ⎝ ⎠ ⎝ ⎠ ⎝

⎞
⎟
⎟
⎟
⎠

               (55) 

where: 

          
0 0

0 0

cos 0 sin
0 1 0

sin 0 cos
P

θ θ

θ θ

−⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

  and   
0

0 0

0

0

0

0

0 sin

1 sin 0

0 cos

x

x

x

V 0

0
xP V

V

θ

θ

θ

⎛ ⎞−
⎜

= ⎜
⎜ ⎟⎜ ⎟
⎝ ⎠

V
⎟

− ⎟   (56) 

The second type of linearization concerns the calculations of angular speeds p, q, and r in the aircraft 
system of coordinates from the Euler angles and their derivatives in the inertial system of coordinates. The 
angular speeds p, q, and r are expressed4 as functions of Euler angles φ, θ, and ψ, respectively, and their 
time derivatives ,φ θ  and ψ . The small perturbations theory is applied to the Euler angles φ, θ, and ψ, 

their time derivatives  ,φ θ  and ψ  and to the angular speeds p, q, and r. The initial data given by the 
NASA DFRC laboratories are given for the angular speeds 0 0 0 0p q r= = = , Euler angles and their time 

derivatives 0 0 0φ ψ= = , 0 0θ α= , and 0 0 0 0φ θ ψ= = = . The products of small angle variations such as 
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Δφ Δθ  and other products of such small angles can be neglected. For small angle variations Δφ, Δθ, and 
Δψ   (sin Δφ = Δφ, cos Δφ = 1, ...), we can write the following system of equations : 

 
0 0

0 0

sin 1 0 sin
0 1 0

cos 0 0 cos

p
q
r

R
φ ψ θ θ φ φ

θ θ θ
θ ψ θ ψ

⎛ ⎞ ⎛ ⎞Δ Δ − Δ − Δ Δ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟Δ = Δ = Δ = Δ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟Δ Δ Δ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ψ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟Δ⎝ ⎠

 (57) 

where R is the following matrix: 

 
0

0

1 0 sin
0 1 0
0 0 cos

R
θ

θ

−⎛ ⎞
⎜= ⎜
⎜ ⎟
⎝ ⎠

⎟
⎟

a

 (58) 

We next replace the vectors (Δu Δv Δw)T given by equations (55) and (56) and (Δp Δq Δr)T given by 
equations (57) and (58) into the two sets of equations (53.1) and (53.2) for the variations of forces 

, ,a aX Y ZΔ Δ Δ  and moments ΔLa, ΔMa and ΔNa in the aircraft system of coordinates, and we obtain: 

_

_

_

_

_

_

_

11 12 13 ( 14 11 1) 1

long LEF

long TEF

long AIL

long HT
a x i

long RUD
a y i

lat LEF
a z i

lat TEF

la

X V X
Y C P V C Y C R C C P D
Z V Z

δ
δ
δ
δ

φ φ
δ

θ θ
δ

ψ ψ
δ
δ

Δ
Δ
Δ
Δ

⎛ ⎞Δ Δ Δ Δ Δ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
Δ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟Δ = ⋅ ⋅ Δ + ⋅ Δ + ⋅ ⋅ Δ + + ⋅ ⋅ Δ + ⋅⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ Δ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟Δ Δ Δ Δ Δ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ Δ
Δ _

_

_

t AIL

lat HT

lat RUD

δ
δ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟Δ⎜ ⎟
⎜ ⎟Δ⎝ ⎠

⎟        (59.1) 
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_

_

_

_

_

_

_

_

21 22 23 +( 24 21 1) 2

long LEF

long TEF

long AIL

long HT
a x i

long RUD
a y i

lat LEF
a z i

lat TEF

lat AIL

L V x
M C P V C y C R C C P D
N V z

δ
δ
δ
δ

φ φ
δ

θ θ
δ

ψ ψ
δ
δ

Δ
Δ
Δ
Δ

⎛ ⎞Δ Δ Δ Δ Δ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
Δ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟Δ = ⋅ Δ + Δ + ⋅ Δ + ⋅ Δ +⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ Δ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟Δ Δ Δ Δ Δ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ Δ
Δ

_

_

lat HT

lat RUD

δ
δ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟Δ⎜ ⎟
⎜ ⎟Δ⎝ ⎠

⎟           (59.2) 

The development of equations (59.1) and (59.2) can be seen in Figure 6: 

φΔ

VzΔ
VyΔ
VxΔ

izΔ
iyΔ
ixΔ

( )aX forceΔ

( )aY forceΔ

( )aZ forceΔ

( )aN momentΔ

( )aM momentΔ

( )aL momentΔ

rudΔ
htΔ
ailΔ
tefΔ
lefΔ
rudΔ
htΔ
ailΔ
tefΔ
lefΔ

θΔ
ψΔ

∑

∑
φΔ
θΔ
ψΔ

ηΔ

ηΔ

0η

0η

ηΔ

ηΔ

, ,

, ,
x y z

i i i

V V V

x y z

, ,
DCM
φ θ ψ

( , , )aV u v w

ix

iy
iz

φ

θ
ψ

xV

zV
yV

φ
θ
ψ

, ,φ θ ψ

dynq
, ,S c b

 

Figure 6:  New scheme including the variations of state vectors and their time derivatives  
ηΔ and ηΔ  in closed loop form 

In Figure 6, we introduce the following notations for the state vector variations ηΔ  and ηΔ : 

[ ]T ;i i ix y zη φ θ ψΔ = Δ Δ Δ Δ Δ Δ
T

x y zV V V  ⎡η φ θ ψ ⎤Δ Δ Δ Δ Δ ΔΔ = ⎣ ⎦             (60) 

2.3 AERODYNAMIC FORCES FOR RIGID-TO-RIGID AND RIGID-CONTROL 
INTERACTIONS MODE CALCULATIONS 

 
To continue this work, we need to calculate the aerodynamic forces and moments variations for rigid-to-
rigid Qrr and rigid-to-control Qrc interaction modes in the inertial system i. Linearization of forces and 
Euler angles from the aircraft system of coordinates a into the inertial system i is realized by use of the 
small perturbations theory.   

The inertial forces variations’ ΔXi, ΔYi, and ΔZi are written as functions of force variations in the aircraft 
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system of coordinates Xa, Ya, and Za by use of the CDM in a form similar to the one given by equations 
(18). The small perturbation theories are applied to the Euler angles, and then we obtain two sets of 
equations for the forces and for the moments, under the following form: 

                                   1 0
i a a

i a a

i a a

a

a

a

X X X
Y F Y F F Y F Y

X

Z Z Z

φ
θ
ψ

Δ Δ Δ Δ Δ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜Δ = Δ + Δ = Δ + = Δ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟Δ Δ Δ Δ Δ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠Z

⎟
⎟

a

a

a

L

N

⎟
⎟

  (61.1) 

and for the moments: 

   (61.2) 1 0
i a a

i a a

i a a

L L L
M F M F F M F M
N N N

φ
θ
ψ

Δ Δ Δ Δ Δ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜Δ = Δ + Δ = Δ + = Δ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟Δ Δ Δ Δ Δ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

where                                         
0 0

0 0

cos 0 sin
0 1 0

sin 0 cos
F

θ θ

θ θ

⎛ ⎞
⎜= ⎜
⎜ ⎟−⎝ ⎠

⎟
⎟                                                                    (62) 

The forces and moments variations in the aircraft system of coordinates given by equations (59.1) and 
(59.2) are replaced in equations (61.1) and (61.2), in which a vector of zeros of dimensions (3x10) is 
added, and therefore, the forces and moments are obtained in the inertial system of coordinates i:  

_

_

_

_

_

_

_

_

_

_

12 ( 14 11 1) 1

long LEF

long TEF

long AIL

long HT
i i

long RUD
i i

lat LEF
i i

lat TEF

lat AIL

lat HT

lat RUD

X x
Y F C y F C C P F D
Z z

δ
δ
δ
δ

φ
δ

θ
δ

ψ
δ
δ
δ
δ

Δ⎛ ⎞
⎜ ⎟Δ⎜ ⎟
⎜ ⎟Δ
⎜ ⎟

Δ⎜ ⎟Δ Δ Δ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎜ ⎟Δ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟Δ = ⋅ ⋅ Δ + + ⋅ ⋅ Δ + ⋅ ⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟ Δ⎜⎜ ⎟ ⎜ ⎟ ⎜ ⎟Δ Δ Δ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎜ Δ
⎜

Δ⎜
⎜ Δ⎜
⎜ Δ⎝ ⎠

(3 10)11 13 (0 0 0 0 0 0 0 0 0 0)
x

T
y x

z

V
F C P V F C R Zeros

V

φ
θ
ψ

+
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎛ ⎞Δ Δ⎛ ⎞
⎜ ⎟⎜ ⎟+ ⋅ ⋅ ⋅ Δ + ⋅ ⋅ ⋅ Δ + ⋅⎜ ⎟⎜ ⎟

⎜ ⎟ ⎜ ⎟Δ Δ⎝ ⎠ ⎝ ⎠

   (63.1) 
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_

_

_

_

_

_

_

_

_

_

22 ( 24 21 1) 2

long LEF

long TEF

long AIL

long HT
i i

long RUD
i i

lat LEF
i i

lat TEF

lat AIL

lat HT

lat RUD

L x
M F C y F C C P F D
N z

δ
δ
δ
δ

φ
δ

θ
δ

ψ
δ
δ
δ
δ

Δ⎛ ⎞
⎜ ⎟Δ⎜ ⎟
⎜ ⎟Δ
⎜ ⎟

Δ⎜ ⎟Δ Δ Δ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎜ ⎟Δ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟Δ = ⋅ Δ + + ⋅ Δ + ⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟ Δ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟Δ Δ Δ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎜ ⎟Δ
⎜ ⎟

Δ⎜
⎜ Δ⎜
⎜ Δ⎝ ⎠

(3 10)21 23 (0 0 0 0 0 0 0 0 0 0)
x

T
y x

z

V
F C P V F C R Zeros

V

φ
θ
ψ

+

⎟
⎟
⎟
⎟

⎛ ⎞Δ Δ⎛ ⎞
⎜ ⎟⎜ ⎟+ ⋅ ⋅ ⋅ Δ + ⋅ ⋅ ⋅ Δ + ⋅⎜ ⎟⎜ ⎟

⎜ ⎟ ⎜ ⎟Δ Δ⎝ ⎠ ⎝ ⎠

   (63.2) 

We arrange equations (63.1) and (63.2) in order to obtain the generalized coordinate vectors’ variations 
ηΔ  and ηΔ  given by equations (60), and the control vectors u  and u . 
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_

_

_

_

_

_

_

_

_

_

1 2 ( 1 4 1 1 1 ) 1
2 2 ( 2 4 2 1 1 ) 2

i

i

i

i

l o n g L E Fi

l o n g T E Fi

l o n g A I Li

l o n g H Ti

l o n g R U Di

l a t L E F

l a t T E F

l a t A I L

l a t H T

l a t R U D

x
y
z

X
Y
Z F C F C C P F D
L F C F C C P F D

M
N

φ
θ
ψ

δ
δ
δ
δ

δ
δ
δ
δ
δ

δ

Δ⎛
⎜ Δ⎜
⎜ Δ
⎜

Δ⎜
⎜ Δ
⎜

ΔΔ⎛ ⎞
⎜ ⎟ ΔΔ⎜ ⎟
⎜ ⎟ ΔΔ +⎡ ⎤

=⎜ ⎟ ⎢ ⎥ ΔΔ +⎣ ⎦⎜ ⎟
⎜ ⎟ ΔΔ
⎜ ⎟⎜ ⎟ ΔΔ⎝ ⎠

Δ
Δ
Δ
Δ

Δ⎝

0
1 1 1 3 0 0

                                   
2 1 2 3 0 0

0
0
0
0
0
0
0

x

y

z

V
V
V

F C P F C R
F C P F C R

φ
θ
ψ

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

+⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

⎠
Δ⎛ ⎞

⎜ ⎟Δ⎜ ⎟
⎜ ⎟Δ
⎜ ⎟

Δ⎜ ⎟
⎜ ⎟Δ
⎜ ⎟

Δ⎜ ⎟
⎜ ⎟
⎜ ⎟

⎡ ⎤
+ ⎢ ⎥

⎣ ⎦ ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

⎜ ⎟
⎜ ⎟

          (64) 

The system of equations (64) is simulated with the scheme shown in Figure 7. 
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φΔ

VzΔ
VyΔ
VxΔ

izΔ
iyΔ
ixΔ

rudΔ
htΔ
ailΔ
tefΔ
lefΔ
rudΔ
htΔ
ailΔ
tefΔ
lefΔ

θΔ
ψΔ

∑

∑
φΔ
θΔ
ψΔ

ηΔ

ηΔ

0η

0η

ηΔ

ηΔ

, ,

, ,
x y z
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Figure 7:  Scheme with force and moment variations in the aircraft system of coordinates from the inertial system of 
coordinates 

In order to calculate the aerodynamic forces Qrr and Qrc, we need to write the equation of motion for the 
flexible aircraft structure in terms of generalized coordinates, in the following form: 

 M η+Dη+Kη Qη 0dynq+ =  (65) 

which can be written in a simplified form as: 

 1M η + D η + K η 0y+ =  (66) 

where the last term of equation (66) is: 

 [ ]T
1 Qη=aero dyn i i i i i iy F q X Y Z L M N= = Δ Δ Δ Δ Δ Δ  (67) 

The aerodynamic forces Q have real and imaginary parts, and for this reason equation (67) can also be 
expressed as: 
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 1
j( j )dyn R I dyn R dyn Iy q Q Q q Q q Qωηη η
ω

= + = +  (68) 

From the generalized coordinates definition j tAe ωη = , where A is the amplitude of motion and ω is the 

oscillations frequency, we calculate the generalized coordinates derivative with time j =jAe j tωη ω ω= η . 
The reduced frequency is given by the following equation: 

 
2

b ck
V V
ω ω

= =  (69) 

We replace ω calculated with equation (69) into equation (68) and we obtain:  

 1 2dyn R dyn I dyn R dyn I
cy q Q q Q q Q q Q
kV

ηη η
ω

= + = + η  (70) 

The real parts of aerodynamic forces QR correspond to the state vectors x and control vectors u and the 
imaginary parts of aerodynamic forces QI correspond to the time derivatives of state vectors x and control 
vectors u, and therefore we can write: 

 1 2 2
R R I

dyn rr dyn rc dyn rr dyn rc
c cy q Q q Q u q Q q Q u
Vk Vk

η η= + + + I  (71) 

Equation (71) may be expressed in the form of the second state space equation: 

 1 2 2
R I R I

dyn rr rr dyn rc rc

uc cy q Q Q q Q Q
uVk Vk

η
η

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛= +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜
⎝ ⎠ ⎝⎝ ⎠ ⎝ ⎠

⎞
⎟
⎠

    (72) 

Equation (64) may be written by use of state vectors η  and their time derivatives η  and with control 
vectors u and their time derivatives , as follows: u

1

12 ( 14 11 1) 1 11 13 0
22 ( 24 21 1) 2 21 23 0

i

i

i

i

i

i

X
Y
Z F C F C C P F D F C P F C R

y
L F C F C C P F D u F C P F C R u
M
N

η η

Δ⎛ ⎞
⎜ ⎟Δ⎜ ⎟
⎜ ⎟Δ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞

= = +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥Δ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⎣ ⎦⎝ ⎠ ⎝ ⎠⎝ ⎠⎜ ⎟
⎜ ⎟Δ
⎜ ⎟⎜ ⎟Δ⎝ ⎠

                   (73) 
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Equation (72) can also be presented in the following form: 

[ ] ( )T
1 2 2

R R I I
i i i i i i dyn rr dyn rc dyn rr dyn rc

c cy X Y Z L M N q Q q Q q Q q Q
u uVk Vk
η η⎛ ⎞ ⎛ ⎞⎛= Δ Δ Δ Δ Δ Δ = +⎜ ⎟ ⎜ ⎟⎜

⎝ ⎠⎝ ⎠ ⎝ ⎠

⎞
⎟

R

R

⎟⎟

⎟⎟

⎟
⎟

 (74) 

The  and matrices are represented under analytical form (with 6 rows and 16 columns). By 
identification of the aerodynamic forces matrices given in equations (73) and (74), we calculate the terms 
of the real aerodynamic forces for rigid-to-rigid mode interactions  and the terms of the real 

aerodynamic forces for rigid-to-control mode interactions , and thus we obtain: 

rrQ rcQ

rrQ

rcQ

  (75.1) _11 _12

_ 21 _ 22

12 ( 14 11 1)
22 ( 24 21 1)

R R
rr rrR

rr R R
rr rr

Q QF C F C C P
Q

Q QF C F C C P
⎛ ⎞⋅ ⋅ + ⋅⎡ ⎤

= = ⎜⎢ ⎥ ⎜⋅ ⋅ + ⋅⎣ ⎦ ⎝ ⎠

  (75.2) _11

_ 21

1
2

R
rcR

rc R
rc

QF D
Q

QF D
⎛ ⎞⋅⎛ ⎞

= = ⎜⎜ ⎟ ⎜⋅⎝ ⎠ ⎝ ⎠

The elements  of real aerodynamic forces have the following 
analytical forms: 

_11 _12 _ 21 _ 22 _11 _ 21, , , , ,R R R R R R
rr rr rr rr rc rcQ Q Q Q Q Q

1,1 1,2 1,3

_11 2,1 2,2 2,3

3,1 3,2 3,3

R
rr

qr qr qr
Q qr qr qr

qr qr qr

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

;    (76.1) 
1,4 1,5 1,6

_12 2,4 2,5 2,6

3,4 3,5 3,6

R
rr

qr qr qr
Q qr qr qr

qr qr qr

⎛ ⎞
⎜= ⎜
⎜ ⎟
⎝ ⎠

4,1 4,2 4,3

_ 21 5,1 5,2 5,3

6,1 6,2 6,3

R
rr

qr qr qr
Q qr qr qr

qr qr qr

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

; 

4,4 4,5 4,6

_ 22 5,4 5,5 5,6

6,4 6,5 6,6

R
rr

qr qr qr
Q qr qr qr

qr qr qr

⎛ ⎞
⎜ ⎟= ⎜
⎜ ⎟
⎝ ⎠

⎟  (76.2) 

1,7 1,8 1,9 1,10 1,11 1,12 1,13 1,14 1,15 1,16

_11 2,7 2,8 2,9 2,10 2,11 2,12 2,13 2,14 2,15 2,16

3,7 3,8 3,9 3,10 3,11 3,12 3,13 3,14 3,15 3,16

R
rc

qr qr qr qr qr qr qr qr qr qr
Q qr qr qr qr qr qr qr qr qr qr

qr qr qr qr qr qr qr qr qr qr

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 (76.3) 
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4,7 4,8 4,9 4,10 4,11 4,12 4,13 4,14 4,15 4,16

_ 21 5,7 5,8 5,9 5,10 5,11 5,12 5,13 5,14 5,15 5,16

6,7 6,8 6,9 6,10 6,11 6,12 6,13 6,14 6,15 6,16

R
rc

qr qr qr qr qr qr qr qr qr qr
Q qr qr qr qr qr qr qr qr qr qr

qr qr qr qr qr qr qr qr qr qr

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 (76.4) 

By identification of the imaginary parts of aerodynamic forces  and  in equations (73) and (74), 
we can write:  

I
rrQ I

rcQ

  (77) [ T_11 _12

_21 _22

11 13
; 0

21 23

I I
rr rrI I

rr rcI I
rr rr

Q QF C P F C R
Q

Q QF C P F C R
⎛ ⎞⋅ ⋅ ⋅ ⋅⎛ ⎞

= = ⎜ ⎟⎜ ⎟ ⎜ ⎟⋅ ⋅ ⋅ ⋅⎝ ⎠ ⎝ ⎠
]0Q =

11

⎟

⎟

qr qr q
⎞
⎟
⎟
⎟
⎠

R

The elements of the imaginary aerodynamic forces  and  have 
the analytical forms given in the following equations: 

_11 _12 _ 21 _ 22 _, , , ,I I I I I
rr rr rr rr rcQ Q Q Q Q _ 21

I
rcQ

1,1 1,2 1,3

_11 2,1 2,2 2,3

3,1 3,2 3,3

I
rr

qi qi qi
Q qi qi qi

qi qi qi

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

;  (78.1) 
1,4 1,5 1,6

_12 2,4 2,5 2,6

3,4 3,5 3,6

I
rr

qi qi qi
Q qi qi qi

qi qi qi

⎛ ⎞
⎜ ⎟= ⎜
⎜ ⎟
⎝ ⎠

4,1 4,2 4,3

_ 21 5,1 5,2 5,3

6,1 6,2 6,3

I
rr

qi qi qi
Q qi qi qi

qi qi qi

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

;  (78.2) 
4,4 4,5 4,6

_ 22 5,4 5,5 5,6

6,4 6,5 6,6

I
rr

qi qi qi
Q qi qi qi

qi qi qi

⎛ ⎞
⎜ ⎟= ⎜
⎜ ⎟
⎝ ⎠

We next show the calculation of one single term corresponding to the real parts of the aerodynamic forces, 
since the same theory is used to calculate all of the terms of the real and imaginary aerodynamic forces. 
Please note that the F matrix is given by equations (62) and the C12 matrix is analytically given.  

1,4 1,5

2,4 2,5

3,

1,6

2,6

3

0 0 1,1 1,2 1,3

_11 2,1 2,2 2,3

0 0 3,4 3 , 1 3,6 2 3,5 ,3

cos 0 sin
12 0 1 0

sin 0 cos

R
rr

qr qr qr
Q F

c c
C c c

c c
r

qr qr q

c
c

rc

θ θ

θ θ

⎛ ⎞ ⎛⎛ ⎞
⎜ ⎟ ⎜⎜ ⎟= ⋅ = =⎜ ⎟ ⎜⎜ ⎟

⎜ ⎟⎜ ⎟ ⎜−⎝ ⎠⎝ ⎠ ⎝

 (79) 

The coefficients equal to zero are coloured in blue (the first two columns of C12 are zero) while the 
coefficients not equal to zero are coloured in red. By identification of the  matrix elements expressed 
by equation (79) and of the C matrix values given by equations (50) and other equations (not shown, due 
to the pages number limitation): 

_11rrQ
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( ) ( )

( ) ( )

1,1 1,2 1,3 1,6 0 3,6 0 4,5 0 0 5,5 0 0

2,1 2,2 2,3 2,6 6,5

3,1 3,2 3,3 1,6 0 3,6 0 4,5 0 0 5,5 0 0

0; 0; cos sin cos sin

0; 0;

0; 0; sin cos sin cos

qr qr qr c c S a a

qr qr qr c S a

qr qr qr c c S a a

θ θ θ α θ α

θ θ θ α θ α

⎡ ⎤= = = ⋅ + ⋅ = − ⋅ − − ⋅ −⎣ ⎦
= = = = ⋅

⎡ ⎤= = = − ⋅ + ⋅ = ⋅ − − ⋅ −⎣ ⎦

 (80) 

The ai’s coefficients terms in equations (80) contain stability and control derivatives as seen in equations 
(1)-(6). Therefore, we obtain, for all rigid aerodynamic elements QR, the following table, in which the first 
3 elements on column 4 were given in equation (80). 
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Figure 8: Simulation scheme for aerodynamic force calculations from generalized coordinates 
 
 

 
ix  iy  iz  

X 0 0 ( ) ( )( )0 0 0 0cos sin
h hd lftS C Cθ α θ α⋅ − ⋅ − − ⋅ −  

Y 0 0 
hyS C⋅  

Z 0 0 ( ) ( )( )0 0 0 0sin cos
h hd lftS C Cθ α θ α⋅ ⋅ − − ⋅ −  

L 0 0 ( ) ( )( )0 0 0 0cos sin
h hl nS b C Cθ α θ⋅ ⋅ ⋅ − + ⋅ −α  

M 0 0 
hmS c C⋅ ⋅  

N 0 0 ( ) ( )( )0 0 0 0sin cos
h hl nS b C Cθ α θ⋅ ⋅ − ⋅ − + ⋅ −α  
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 φ θ ψ δ 
X 0 

dS C
α

− ⋅  0 
dS C

δ
− ⋅  

Y 
0sinyS C

β
θ⋅ ⋅  0 

yS C
β

− ⋅  yS C
δ

⋅  
Z 0 ( )lft lftS C C

θ α
− ⋅ − −  0 

lftS C
δ

− ⋅  

L 
0sinlS b C

β
θ⋅ ⋅ ⋅  0 

lS b C
β

− ⋅ ⋅  lS b C
δ

⋅ ⋅  

M 0 ( )m mS c C C
θ α

⋅ ⋅ +  0 
mS c C

δ
⋅ ⋅  

N 
0sinnS b C

β
θ⋅ ⋅ ⋅  0 

nS b C
β

− ⋅ ⋅  nS b C
δ

⋅ ⋅  
 

Table 1 Real aerodynamic forces QR  

 
 

ix  iy  iz  
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VdS C− ⋅  0 

0

d

x

C
S

V
α− ⋅  

Y 0 

0

y

x

C
S

V
β⋅  

0 

Z 
VlftS C− ⋅  0 

0

lft

x

C
S

V
α− ⋅  

L 0 

0

l

x

S b C

V
β

⋅ ⋅
 

0 

M 
VmS c C⋅ ⋅  0 

0

m

x

S c C
V

α
⋅ ⋅

 

N 0 

0

n

x

S b C

V
β

⋅ ⋅
 

0 

 
 φ  θ  ψ  δ  
X 

pdS C− ⋅  
qdS C− ⋅  0sin

pdS Cθ⋅ ⋅  0 

Y 
pyS C⋅  0 ( )0 0sin cos

p ry yS C Cθ θ⋅ − ⋅ + ⋅  0 

Z 
plftS C− ⋅  

qlftS C− ⋅  0sin
plftS Cθ⋅ ⋅  0 

L 
pl

S b C⋅ ⋅  0 ( )0 0sin cos
p rl lS b C Cθ θ⋅ ⋅ − ⋅ + ⋅  0 

M 
pmS c C⋅ ⋅  

qmS c C⋅ ⋅  0sin
pmS c C θ− ⋅ ⋅ ⋅  0 

N 
pnS b C⋅ ⋅  0 ( )0 0sin cos

p rn nS b C Cθ θ⋅ ⋅ − ⋅ + ⋅  0 

 
Table 2 Imaginary aerodynamic forces QI  
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The first simulation scheme (Figure 1) represents a system that uses the stability and control derivatives in 
the wind system of coordinates and in which the forces and moments are calculated in the aircraft system 
of coordinates.  The second simulation scheme (Figure 8) represents an equivalent scheme similar to the 
first, in which the states in the inertial system of coordinates are used in the closed loop. 
 
2.4 NUMERICAL LINEARIZATION SCHEME 

 
The formulations already developed in Sections 1-3 will be validated for particular cases where the same 
types of stability and control derivatives are given in the wind system of coordinates. A problem appears if 
we add, subtract or change a derivative or its initial value in the formulations, because then all the 
formulations change. Therefore, we need to develop automatic simulation formulations. We develop a 
Matlab algorithm in which all of the above changes in coordinates and linearizations are automatically 
realized. We use the ‘dlinmod’ Matlab function which gives, in the state space form, the linearized form of 
a system built in Simulink, around a specified trim point condition. The simulation scheme presented in 
Figure 9 is equivalent to the scheme presented in Figure 1 and takes into consideration the stability 
derivatives given in the wind coordinate system.  
 

 

 ΔFw
Δ Mw

Transformation of wind 
coord’s system to aircraft 

coord’s system 

ΔFa  
ΔMa

  6 dof  Parameters

1
2

3 

45

u 

Figure 9:  Simulation aircraft scheme with stability and control derivatives given in the   wind coordinates system 

In Block 1 of Figure 9, the forces and moments Fw and Mw are calculated from the stability and control 
derivatives given in the wind system of coordinates. To simulate aircraft behavior, we convert these forces 
and moments, determined in block 1, to forces and moments in the aircraft coordinate system shown in 
block 3, using block 2 for the transformation from the wind coordinate system to the aircraft coordinate 
system. The aircraft linear and angular speeds are the block 4 outputs and are calculated from the forces 
and moments in the aircraft coordinate system by use of the 6 degrees-of-freedom equations of motion. 
Parameters specific to the aircraft in the wind system of coordinates, such as the angle of attack, sideslip 
angle, and true airspeed are further calculated in block 5 and used as inputs to block 1 in the aircraft time 
simulation.  
The scheme presented in Figure 9 around the trim point specified in the simulation is then linearized by 
use of the ‘dlinmod’ command in Matlab, where the linear relationship between the inputs u and the 
outputs y is obtained under state space form, in which the state vectors 
are ( , , , , , , , , , , ,i i i )x u v w p q r x y zφ θ ψ= . The components of the state vectors x are the linear speeds u, v, 
and w, the rates p, q, and r, the angles φ, θ and ψ and the three positions xi, yi and zi. The scheme presented 
in Figure 9 can further be also represented under state space form in Figure 10.  

Analytical and Simulation Method 
Validation for Flutter Aeroservoelasticity Studies 

RTO-MP-AVT-154 1 - 27 

UNCLASSIFIED/UNLIMITED 

UNCLASSIFIED/UNLIMITED 
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DuCxy
BuAxx

+=
+=

 
y = Fa, Ma

Figure 10:    Equivalence with the scheme shown in Figure 9 

Then, the state variables x are calculated with the first state space system equations and are further used in 
the second equation of the state space system to calculate the outputs y.  In this case, we find the next 
scheme, equivalent to that shown in Figure 10, in which the block 4 outputs, from the 6 degrees of 
freedom (dof) equations of motion (see Figure 9), are used.  
As the schemes shown in Figures 9 and 11 are compared, it is obvious that blocks 1, 2, and 4 are contained 
in the C and D matrices. The aircraft model thus obtained gives the variations of forces and moments 
calculated in the aircraft coordinate system dependent on the inputs u and state vectors x. The matrices 

 and , corresponding to rigid-to-rigid and to rigid-to-control mode interactions, respectively, are 
determined for aerodynamic forces in this way.  The states multiplying these matrices, and the forces and 
moments, are calculated in the inertial system of coordinates. The scheme shown in Figure 11 is 
redesigned by adding a first block which changes the outputs y

rrQ rcQ

i into y and a second block which changes 
the states x into the states xi. This new scheme is presented in Figure 12. 

y = Fa, May = Cx + Du

6 dof

u 

 

Figure 11:    Equivalent schemes with the Figure 2 

 

u 
yi = Cixi + Diu yi   to  y y = Fa, Ma

6 dof 

y

x  to  xi

Figure 12: Simulation scheme with forces and moments calculated in the inertial system of coordinates 
 
The changes to the coordinates implemented in the added blocks depend on the trigonometric functions of 
Euler angles, more specifically the inputs are related to the outputs by nonlinear functions. The two blocks 
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are then further linearized, which requires that the Matlab command ‘dlinmod’ be applied to the two 
blocks. For the block ‘x to xi’, a linear relationship is obtained: 

 1ix D x=    (81) 

which represents a simplified form of a state space system where matrices A, B, and D1 are zeros, as this 
block has no states. The linearization of block ‘yi to y’ gives: 

 2 iy D y=  (82) 

By using the blocks shown in Figure 12, and equations (81) and (82), we write:  

 ( ) ( )2 2 2 1 2 1 2i i i i i i iy D y D C x D u D C D x D u D C D x D D u= = + = + = + i

i=

=

 (83) 

Identifying the matrices given by equation (83) with those given by the state space equations: 

  (84) 2 1 2;iC D C D D D D=

The C and D matrices are obtained from the linearization presented in Figure 9, and the D1 and D2 
matrices are obtained by the linearization of two blocks shown in Figure 12. We calculate the Ci and 
Di matrices with equations (84): 

  (85) 1 1 1
2 1 2;i iC D CD D D D− − −=

and the state vector xi is: 

 ( ) [ T, , , , , , , , , , ,
T

i i i i i i i r rx x y z x y z ]φ θ ψ φ θ ψ η η= =  (86) 

We can write the aerodynamic force equations for the rigid modes in the following form, similar to 
equation (71): 

 
2 2

R I R I
dyn rr r rr r dyn rr dyn rr i i i

c cq Q Q q Q q Q x C x
Vk Vk

η η⎡ ⎤ ⎛ ⎞+ = =⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠
      (87) 

The real and imaginary parts of the aerodynamic forces corresponding to the rigid modes are obtained by 
identification from equation (87):  

 ( ) (1 21: 6,1: 6 ; 1: 6,7 :12R I
rr i rr i

dyn dyn

VkQ C Q C
q cq

= = )  (88) 
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The control vector u is   [ ]T0cu η= . The real and imaginary parts of the aerodynamic forces 
corresponding to the interactions of rigid modes with the control modes are determined with the following 
equations:  

 
1 ;R

rc i rc
dyn

Q D Q
q

= 0I =  (89) 

The algorithm is presented in the following three steps:  1. We apply the Matlab command ‘dlinmod’ to 
each of the 3 blocks in order to obtain C, D, D1 and D2 matrices; 2. Equations (88) and (89) are used to 
calculate the matrices Qrr and Qrc and 3. The initial matrices calculated with the Doublet Lattice method, 
DLM, or with the Constant Pressure Method, CPM, calculated by finite element software, are replaced 
with the matrices obtained with our algorithm. For validation purposes, the algorithm represents the 
numerical implementation (shown in Section 4) of analytical implementation presented in Sections 1-3. A 
comparison between the obtained values with the analytical formulation and the numerical formulation 
presented here is given in the following tables.  
 

 x y z x  y  z  
x 0 0 0 0 -614.96 0 
y 0 0 0 -81.33 0 468.36 
z 0 0 0 0 -1502.2 0 
x  0 0 0 -158.72 0 914.06 
y  0 0 0 0 -731.29 0 
z  0 0 0 367.85 0 -2118.3 

 
Table 3  Real part of Qrr matrix obtained by analytical linearization  
 
 x y z x  y  z  
x 0 0 -7.45E-

26 0 -614.96 0 

y 0 0 0 -81.33 0 468.36 
z 0 0 -4.38E-

25 0 -1502.2 0 

x  0 0 0 -158.72 0 914.06 
       
y  0 0 -6.16E-

23 0 -731.29 0 

z  0 0 0 367.85 0 -2118.3 
 
Table 4 Real part of Qrr matrix obtained by numerical linearization 
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 x y z x  y  z  
x -0.04 0 -0.65947 0.08 -8.6 -

0.013892 
y 0 -0.50226 0 2.16 0 99.091 
z -0.08 0 -1.6109 0.08 -800.16 -

0.013892 
x  0 -0.98022 0 -5412.5 0 3948.3 
y  -

0.9216 0 -0.78373 1.3824 -15977 -0.24005 

z  0 2.2717 0 -704.62 0 -2809.5 
Table 5  Imaginary part of Qrr matrix obtained by analytical linearization  
 x y z x  y  z  
x 

-0.04 0 -0.65947 0.08 -8.6
-

0.013892 
y 0 -0.50226 0 2.16 0 99.091 
z 

-0.08 0 -1.6109 0.08 -800.16
-

0.013892 
x  0 -0.98022 0 -5412.5 0 3948.3 
y  -

0.9216 0 -0.78373 1.3824 -15977 -0.24005 
z  0 2.2717 0 -704.62 0 -2809.5 

 
Table 6  Imaginary part of Qrr matrix obtained by numerical linearization 
 
We can see that the obtained results are the same. Developing the numerical algorithm allowed us to 
verify the partial and final results for 90 flight test conditions6.  
 
CONCLUSIONS 
 
In this paper, we used two approaches: analytical (Sections 1 to 3) and numerical (Section 4) to validate 
the aerodynamic force formulations corresponding to rigid-to-rigid and rigid-to-control interaction modes 
for aeroservoelasticity studies -- only from knowing the stability and control derivatives in the wind 
system of coordinates. These derivatives are dependent on flight regime conditions: Mach number, altitude 
and angle of attack. In fact, the aerodynamic forces corresponding to rigid and control interaction modes 
calculated with finite element software are replaced with aerodynamic forces calculated using both 
formulations presented here. 
 
With another aircraft, and thus with a different set of stability and control derivatives, we will use the 
numerical approach combined with the theoretical approach to validate the new formulations. The 
numerical approach will likely be much faster than the theoretical development, because successive 
linearizations may take quite a long time. The theoretical approach may become much more useful in the 
future. The analytical approach developed in Sections 1-3 allows us to obtain the analytical formulas for 
all the stability and control derivatives in the inertial system from those calculated in the wind system of 
coordinates. Linearizations at the trim condition are performed at each calculation step.  
 
The second approach consists of a numerical linearization of the simulation scheme in the wind reference 
system of coordinates. Values of stability and control derivatives obtained with this method and those 
calculated analytically with the first method are the same, therefore, we conclude that the expressions 
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found for the aerodynamic forces corresponding to rigid and control modes are validated.  
 
A comparison was done between the flutter frequencies and damping values for aeroelasticity studies 
(where only the elastic-elastic aerodynamic forces Qee were considered) with the flutter frequencies and 
damping values for aeroservoelasticity studies (where all the aerodynamic force matrix was considered). 
Thus, the common flutter frequencies and damping values were obtained for both aeroelasticity and 
aeroservoelasticity studies.  Additional flutter modes were obtained for the aeroservoelasticity matrix 
where rigid and control modes dynamics were introduced. This comparison was another way to validate 
our formulation, but was not presented here in details.  
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